
Lecture 2-3

Continuing with differential equations, we consider now linear nonhomogeneous equa-
tions y′′ + py′ + qy = g(t), where p, q are functions of t (though we will soon specialize
down to the case where p = a and q = b are constants). We observe first that for any
two solutions y1, y2, the difference y1 − y2 is a solution of the homogeneous equation
y′′ + py′ + qy = 0, and conversely if y1 solves the nonhomogeneous equation and y1 − y2
solves the homogeneous equation, then y2 also solves the nonhomogeneous equation. So
it is enough to find just one solution to y′′ + py′ + qy = g(t) whenever we can completely
solve the homogeneous equation y′′+py′+ qy = 0. In many cases we can guess the general
shape of a particular solution, which will involve one or more undetermined constants, and
then work out what those constants must be to solve the equation. For example, given
the equation y′′ − 3y′ − 4y = 3e2t (see p. 177 of the text), it is not too much of a stretch
to assume that we should be able to find a solution of the form Ae2t for some constant
A; plugging Ae2t into the equation, we get (4A − 6A − 4A)e2t = 3e2t, whence the choice
A = −1/2 solves the equation. A slightly more complicated example (p. 178) is the equa-
tion y′′ − 3y′ − 4y = 2 sin t; here we might at first look for a solution of the form A sin t,
but since the derivative of the sine is the cosine, we are rapidly led to broaden our search
for solutions, considering functions of the form A sin t + B cos t for some constants A and
B. Equating coefficients of sin t and cos t on both sides of the equation, we get the linear
system of equations −5A+3B = 2,−3A−5B = 0, whose solution is A = −5/17, B = 3/17.
Hence one solution of our equation is (−5/17) sin t + (3/17) cos t and the general solution
is (−5/17) sin t + (3/17) cos t + c1e

4t + c2e
−t.

Things get even a little more complicated if the right-hand side g(t) happens to be a
solution to the homogeneous equation. For example (p. 180) take the equation y′′ − 3y′ −
4y = 2e−t. We have already noted above that e−t solves the homogeneous equation, so it
is no use to look for solutions to the above equation of the form Ae−t. Instead (taking our
cue from the solution to homogeneous equation whose characteristic equation has repeated
roots) we look for a solution of the form Ate−t; that is, we multiply the homogeneous
solution by a constant time t. Plugging in this function, we get (−2A − 3A)e−t = 2e−t

and the particular solution is (−2/5)te−t.
In general, if the right side g(t) of the equation y′′ + ay′ + by = g(t) is a polynomial

of degree d, then a particular solution can be found which is a polynomial of degree d; if
the right side g(t) is a polynomial of degree d times an exponential ert, then a particular
solution exists that is a polynomial of degree d times ert, or of this form times t if ert

is a solution to the homogeneous equation. If g(t) is a a polynomial of degree d times a
combination of sin at and cos at, then again a particular solution can be found of the same
form, multiplied by t if sin at and cos at satisfy the homogeneous equation.

As a physical application, consider the motion of a vibrating string on which an ex-
ternal periodic vibration is imposed. If the string vibrates without damping, the left side
of the differential equation governing its motion takes the form mu′′ + ku, where m, k
are positive constants. If no external vibration is imposed, then the general solution is
c1 cos

√
k/mt + c2 sin

√
k/mt, as we have already seen; this periodic function describes

what is called simple harmonic motion. Now suppose that an external periodic vibration
F0 cosωt is imposed, so that the differential equation becomes mu′′ + ku = F0 cosωt. As-



sume first that ω 6= ω0 =
√

k/m. In this case it is not difficult to see that a particular
solution takes the form A cosωt for some constant A; if we assume that the system is
initially at rest, with u(0) = u′(0) = 0, then the solution turns out to be a combination of

cosωt and cosω0t, which may be rewritten as a constant times the product of sin (ω0−ω)t
2

and sin (ω0+ω)t
2 . If |ω0 − ω| is small, then sin (ω0+ω)t

2 is rapidly oscillating compared to

sin (ω0−ω)t
2 . The physical result is a rapidly oscillating function with slowly varying am-

plitude; if the string vibrates in air at a frequency such that we can hear the vibrations,
then we get a “wa-wa” effect that is called a beat. Now assume that ω0 = ω. In this case
we have seen that we must multiply our purely trigonometric functions by t; the solution
u(t) starting from rest is a combination of sinω0t and t cosω0t. Note that the qualitative
behavior has completely changed from what it was in the homogeneous case; the oscillation
now increase without bound as t → ∞. This phenomenon is called resonance; it explains
why when you are singing in the shower you often find that notes at certain pitches sound
much louder than others. These notes correspond to natural frequencies of materials in
the shower; if you sing at these frequencies your volume (or amplitude) increases over time
rather than decreasing or remaining constant.


