
Lecture 2-26

We now review the material we have learned in vector algebra. The vector space
Rn consists of all n-tuples (r1, . . . , rn), with the ri ∈ R. The sum ~a + ~b of two vectors

~a = (a1, . . . , an) and ~b = (b1, . . . , bn) is (a1 + b1, . . . , an + bn); if c ∈ R, then the scalar
multiple c~a = ~ac = (c(a1, . . . , can). These two formulas give the bare bones of geometry
in Rn; they are fleshed out by the further formula ||~a|| =

√
a21 + . . .+ a2n for the length of

the vector ~a and the formula
∑n

i=1 aibi for the dot product ~a ·~b of ~a and ~b. We use the

dot product to define the angle θ between ~a and ~b (if both ~a and ~b are nonzero), taking

cos θ = ~a·~b
||~a||||~b||

; this generalizes our earlier assertion that ~a and ~b are orthogonal if and

only if ~a ·~b = 0. The formula for cos θ makes sense since its numerator is known to have
absolute value at most that of the denominator (the Cauchy-Schwarz inequality); as usual
when taking arccosines, we take 0 ≤ θ ≤ π by definition. In particular, for a fixed nonzero
vector ~a, the unique unit vector ~u maximizing ~a · ~u is ~u = ~a/||~a||, while the unique unit

vector ~u minimizing ~a · ~u is −~a/||~a||. If ~b 6= ~0, then the projection of ~a onto ~b is given by
~a·~b
||~b||

~b; if this vector is subtracted from ~a, the resulting vector is orthogonal to ~b.

If n = 3, then we frequently find ourselves wanting to write down a vector orthogonal
to two other given ones in Rn; fortunately we have a uniform construction ~a×~b of such a
vector, called the cross product of ~a and ~b and defined by the formula
~a × ~b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) if ~a = (a1, a2, a3),~b = (b1, b2, b3). This

construction makes sense only in R3. The length ||~a×~b|| of the cross product ~a×~b is the

product ||~a||||~b|| sin θ of the lengths of ~a,~b and the sine of the angle between them; this

cross product, in addition to being orthogonal to both ~a and ~b, has direction given by the
right-hand rule: if the fingers of the right hand curl from ~a to ~b along the smallest possible
angle, then the right thumb points in the direction of ~a×~b.

We use vectors to either parametrize or give an equation for two of the basic objects of
geometry, namely lines and planes. Any line L in Rn is specified by the choice of one point
~p on it together with a direction vector ~v for it; then L consists exactly of the vectors of the
form ~p+ t~v for some t ∈ R. Of course neither ~p nor ~v is uniquely determined by L; in fact ~p
can be any point on ~L, while ~v can be the difference between any two distinct points of L.
Thus the vector ~v cannot be ~0 and can be replaced by any nonzero multiple of itself, while
~p can in turn be replaced by ~p+ t0~v for any t0 ∈ R. We can find the point of intersection of
two lines L1 = {(p1 + tv1, . . . , pn + tvn)} and L2 = {(q1 + sw1, . . . , qn + swn)} by solving
the simultaneous equations pi + tvi = qi + swi for all i. As there are only two variables
in this system of n equations, we see that a random pair of lines L1, L2 seldom intersects,
whether or not L1 and L2 are parallel, unless the Li both lie in R2.

Turning now to planes P , we have the choice of parametrizing P (in general) or of
giving the equation of P . For the midterm you can confine attention to planes living in
R3. To parametrize P , we start by choosing a point ~p on it and then letting ~v1, ~v2 be the
differences between ~p and two other points ~q, ~r on P , chosen so that the ~vi are independent
in the usual sense that neither is a multiple of the other. Then P = {~p+s~v1+t~v2 : s, t ∈ R},
so that two parameters s, t suffice to specify any point on P uniquely. If P lives in R3, then
we can also define P by a single linear equation ~n · (x, y, z) = c, so that a point (x, y, z)



lies in P if and only if x, y, z satisfy this equation; here c and the coordinates of ~n are
constants with these coordinates not all 0. (The vector ~n is called the normal vector of
P ; as with direction vectors of lines, it cannot be ~0 and can be replaced by any nonzero
multiple of itself.) This follows since given ~p,~v1, ~v2 as above, we can take the cross product
of ~v1 × ~v2 to produce a nonzero vector ~n orthogonal to both of them, and then any point
of the form ~p + s~v2 + t~v2 will have the same dot product with ~n that ~p does, so that the
set of all points having this dot product with ~n includes P and so coincides with it. Then
we can find the point of intersection between P and any line not parallel to it, which will
be unique since it will be the solution to three linear equations in three unknowns. The
angle between nonparallel planes P1, P2 is then the angle between their (nonproportional)
normal vectors; the angle between a line and a plane is π/2 minus the acute angle between
the line and a normal vector to the plane, this acute angle being computed by the above
formula for the cosine of the angle between two nonzero vectors, replacing the dot product
in the numerator by its absolute value, so that the cosine is positive and the angle lies in
the first quadrant.

The derivative ~r′(t) of a vector-valued function ~r(t) = (r1(t), . . . , rn(t)) of one vari-
able t is obtained by differentiating each component: ~r′(t) = (r′1(t), . . . , r′n(t)). The unit

tangent vector ~T (t) is obtained from ~r′(t) by dividing this vector by its length (assuming

~r′(t) 6= ~0); then the unit vector ~N(t) = ~T ′(t)/||~T ′(t)|| in the direction of ~T ′(t), assuming
~T ′(t) 6= ~0, is called the (principal) normal vector. If n = 3, the unique plane containing

~r(t0) and the vectors ~T (t0), ~N(t0), translated so that their tails are at ~r(t0), is called the
osculating plane of the curve ~r(t) at t = t0.


