
Lecture 2-25

We review the material on differential equations for Friday’s midterm. We begin by
recalling variation of parameters: given any linear nonhomogeneous differential equation
y′′+py′+ qy = r for which two independent solutions y1, y2 to the homogeneous equations
y′′+ py′+ qy = 0 are known, there is an explicit integral formula for the general solutions,
namely y = v1y1 + v2y2, where v1 =

∫
(−ry2/W ) dt, v2 =

∫
(ry1/W ) dt, where W =

y1y
′
2 − y2y′1 is the Wronskian of y1, y2 and the integrals are indefinite ones, including the

arbitrary constants; this way we really capture the general solution and it includes the
general solution to the homogeneous equation, as we knew it would have to do. It is worth
emphasizing that this solution works only if the coefficient of y′′ in the equation is 1, as
given above; if this is not the case then one must divide by this coefficient at the outset (and
then worry about points where one or more denominators are 0). In the case of constant
coefficients, we later saw a second solution to this equation in terms of integrals involving
the right side, which I will recall later. In the method of undetermined coefficients, we
guess the general form of a solution, as a combination of derivatives of g(t), possibly times
a power of t or ln t, and then adjust the constants to satisfy the equation.

We now recall the material on Laplace transforms. The Laplace transform Lf of
a function y = f(t) is given by the integral Y (s) =

∫∞
0
e−stf(t) dt. The main reason

that Laplace transforms are important for our purposes comes from the formula Lf (n) =
snLf(s) − sn−1f(0) − sn−2f ′(0) − . . . − f (n−1)(0), as this formula converts the left side
of any linear constant-coefficient differential equation in y to an algebraic equation in its
Laplace transform Y , which can be easily solved. By inverting the Laplace transform, we
then solve for y itself. (This works well if initial conditions on y are given at t = 0; if
they are given at some other point t = t0, then we should change the lower limit of the
integral in the definition of the Laplace transform to t0, so that the above formula for the
transform of the derivatives of y are expressed in terms of the value of it and its derivatives
at t0 instead).

In order to carry this out to solve actual differential equations, it is necessary to use
partial fractions to decompose rational functions p(s)/q(s) as sums of constants over linear
factors and linear functions over quadratic factors. In more detail, if the denominator q(s)
of p(s)/q(s) factors as (s− a1) . . . (s− ar)q1(s) . . . qm(s), where the qi are irreducible and
quadratic, then we look for constants c1, . . . , cr, d1, e1, . . . dm, em such that p(s)/q(s) =
c1/(s − a1) + . . . + cr/(s − ar) + (d1s + e1)/q1(s) + . . . + (dms + em)/qm(s). Bringing
the sum of fractions to a common denominator, multiplying out and equating coefficients
of all powers of s on both sides, we work out what the constants ci, di, ei are. Then by
using that the inverse transforms of b/((s− a)2 + b2), (s− a)/((s− a)2 + b2) are given by
eas sin bs, eas cos bs, respectively, we compute the solution to the given equation satisfying
the given conditions.

Laplace transforms, unlike the other methods we have discussed for solving differential
equations, can accommodate discontinuous functions on the right side of equations. We
recall that the transform of the unit step function uc(t) (defined to be 1 for t ≥ c and 0
for t < c) is e−cs/s; more generally, the transform of uc(t)f(t − c) (the function whose
graph is obtained from the graph of f(t) by shifting it c units to the right) is e−csF (s),
the product of e−cs and the Laplace transform F of f . In applying this formula it is



crucial to make sure that the constant c subtracted from the variable t in f(t− c) matches
the constant in the step function uc(t); if this is not the case, then you must adjust the
function f by subtracting another constant from its argument to make these constants
match up. Given a function r(t) defined to be 0 outside of an interval [a, b], we can always
write it as uaf(t − a) − ubf(t − b) for a suitable function f and then apply the above
formulas to compute its Laplace transform. This is the approach used to solve equations
with “ramped” forcing functions (right sides which are equal to 0 until a certain point,
then increase linearly from 0 to some value a at some point, then remain equal to a past
that point).

Finally, we recall that the inverse Laplace transform of a product F (s)G(s) is the

convolution h(t) =
∫ t

0
f(t−τ)g(τ) dτ of the inverse Laplace transforms f, g of F,G, respec-

tively. We use this result to derive another general formula for the solution to an in ho-
mogeneous differential equation with constant coefficients (as promised above). Given the
equation ay′′+by′+cy = g(t) with the conditions y(0) = y0, y

′(0) = y1, we take the Laplace
transform of both sides to get the equation (as2 + bs+ c)Y (s)− (as+ b)y0 − ay1 = G(s)
for the transform Y (s) of y, where G is the transform of g(t). Solving for Y (s), we

get (as+b)y0+ay1

as2+bs+c + G(s)
as2+bs+c . Then the solution y is the sum of the inverse transform of

(as+b)y0+ay1

as2+bs+c , call it φ(t), and the inverse transform of G(s)
as2+bs+c , call it ψ(t). Then we can

recognize φ(t) as the solution to the homogeneous equation ay′′+by′+cy = 0 with the same

initial conditions y(0) = y0, y
′(0) = y1, while ψ(t) is the convolution

∫ t

0
h(t− τ)g(τ) dτ of

the solution h(t) to ay′′ + by′ + cy = δ(t), y(0) = y′(0) = 0 and g(t). Here δ(t) is the
Dirac delta function, with Laplace transform equal to 1; then this formula says in words
that ψ(t) is the convolution of the impulse response (h(t) and the forcing function g(t).
Note that the formula for ψ(t) is entirely independent of the solution to the homogeneous
equation and so is genuinely different from the integral formula that results from variation
of parameters.


