
Lecture 2-20

Continuing with parametrized curves ~r = ~r(t), regarded as differentiable vector-valued
functions of a variable t running over a closed interval [a, b], suppose now that we are given
two such curves ~r(t), ~s(t) defined on the same interval. Then clearly (~r + ~s)′ = ~r′ + ~s′;
similarly (α~r)′ = α~r′ for any scalar α. More interestingly, since the dot product is bilinear
(satisfying the distributive law on both sides), we can copy the proof of the product rule for
differentiable functions of one variable to show that the derivative (~r ·~s)′ of the real-valued
function ~r ·~s is ~r′ ·~s+~r ·~s′; similarly, if ~r,~s take values in R3, then (~r×~s)′ = ~r′×~s+~r×~s′.
If u = u(t) is a differentiable function of one variable, we also have (u~r)′ = u′~r + u~r′; if in
addition the composite function ~r(u(t) is defined on an interval, then we have the chain
rule ~r(u(t))′ = ~r′(u(t)u′(t). In particular, if ~r is differentiable, then so is r = ||~r(t)||, a real
valued function, except at points where r = 0, and we have rr′ = ~r · ~r′ (on differentiating
the definition of r2 by a dot product).

The text defines the speed of a parametrized curve in R2 but for some reason never
explicitly generalizes this to higher dimensions. We call the length ||~r′|| of the tangent
vector of a parametrized curve ~r = ~r(t) the speed of ~r, often denoting it (as in the last
paragraph) by r = r(t). As in the case of curves lying in R2, the arclength of a curve

segment ~r(t) as t runs over [a, b] is given by the integral
∫ b
a
r(t) dt. This length is then

the least upper bound of the sums of the lengths of the line segments joining ~r(ti) to
~r(ti+1) as {t0, . . . , tn} runs through all partitions of [a, b] and the index i runs from 0 to
n − 1. In Example 2 in the text (p. 718), the arclength of the curve (2 cos t, 2 sin t, t2)

for 0 ≤ t ≤ π/2 (which follows a spiral path) is computed to be
∫ π/2
0

2
√

1 + t2 dt, which
by Formula 78 in the integral table in the text (found on the inside back cover) equals

[t
√
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√

1 + t2]
t=π/2
t=0 = π/2

√
1 + (π2/4) + ln[(π/2) +

√
1 + (π2/4)], or about

4.158.
A curve with constant speed 1 is said to be parametrized by arclength, generalizing

the case where this curve lies in R2. As in that case, we see that any curve can in
theory be reparametrized by arclength, though we may not have an explicit expression
for the arclength parameter. Thanks to the chain rule, we can predict in advance what
the tangent vector to a curve will be at any given point after the curve is reparametrized
by arclength, assuming that the original tangent vector at the point is nonzero; it will be
just the unit vector in the direction of the original tangent vector. There are just two
ways to parametrize any curve by arclength, once an initial point of the curve is specified,
corresponding to the two directions in which one can trace the curve starting from this
point. The direction of the tangent vector to a curve at any point, if this vector is nonzero,
specifies the direction in which the curve is being traced at that point. If a curve is given
by ~r(t), starting from ~r(a) and moving to ~r(b), then the same curve, starting from its
original endpoint ~r(b) and moving in the opposite direction to ~r(a), is parametrized by
~r(a+ b− t).

If a curve ~r has constant speed (not necessarily equal to 1) then we have ~r · ~r′, so
that the position vector ~r of such a curve is always orthogonal to its velocity (or tangent)
vector. We will use this fact repeatedly later on. An example of a curve with constant
speed that we have not seen before is the (circular) helix ~r(t) = (a cos t, a sin t, bt) for



positive constants a, b; here the speed is constantly equal to
√
a2 + b2. In words, this curve

winds around the origin at a constant rate while also rising from the xy-plane at a (possibly
different) constant rate. Note that the curve whose arclength was computed above is not
a circular helix even though it traces a helical path.

If a curve ~r(t) is parametrized by arclength (or more generally has constant speed),

so that its tangent vector ~T (t) = ~r′(t) has constant length 1, then we have seen that the

differentiated tangent vector ~T ′(t) is always orthogonal to ~T (t). Whenever ~T ′(t) is nonzero,

we call the unit vector ~N(t) = ~T ′(t)/||~T ′(t)|| in the direction of ~T ′(t) the principal normal
vector and the unique plane passing through any point of the curve and containing the
unit tangent and principal normal vectors at that point the osculating plane of the curve
at that point; here “osculating” comes from the Latin word for kissing. This is the plane
which most nearly captures the motion of a point tracing the curve at that point. For
example, given the circular helix (a cos t, a sin t, bt) the unit tangent vector at this point is
~T (t) = 1√

a2+b2
(−a sin t, a cos t, b) and unit normal vector is ~N(t) = (− cos t,− sin t, 0). The

equation of the osculating plane is (b sin t)x− (b cos t)y + az = abt (Example 4. p. 711, in
the text).


