
Lecture 2-19

Now we finally return to calculus, this time in a multidimensional context. We have
seen that an n-tuple (p1 + tv1, . . . , pn + tvn) of linear functions of the variable t defines a
line in Rn (if at least one vi is nonzero); more generally, any n functions f1(t), . . . , fn(t)
differentiable on a closed interval [a, b] define a parametrized curve in Rn. For a moment,
consider the more general case of n arbitrary functions f1(t), . . . , fn(t) defined on an
interval (a−h, a+h) for some h > 0. Since the length of any vector ~v = (v1, . . . , vn) ∈ Rn

is bounded below by
√
n times the minimum of the |vi|, and above by

√
n times the

maximum of the |vi|, it follows that limt→a(f(t1), . . . , f(tn)) exists and equals the vector
~a = (a1, . . . , an) in the sense that given ε > 0 there is δ > 0 such that 0 < |t − a| <
δ → ||f(t) − (a1, . . . , an)|| < ε if and only if limt→a fi(t) exists and equals ai for all i. In

particular, the vector-valued function ~f(t) sending t to (f1(t), . . . , fn(t)) is continuous at
t = a if and only if the coordinate functions fi(t) are continuous there. It also follows easily

that the derivative f ′(a) = limt→a
~f(t)−~f(a)

t−a exists if and only if every fi(t) is differentiable

at a; if so then f ′(a) = (f ′1(a) . . . , f ′n(a)). (Here of course we interpret the fraction
~f(t)−~f(a)

t−a
as the scalar 1

t−a times the vector ~f(t) − ~f(a).) Thus for example the derivative of the

vector-valued function (t2, t3, t4) at any point t is given by (2t, 3t2, 4t3).

Generalizing the case n = 2 which we have treated before, we therefore define the tan-
gent or velocity vector of a parametrized curve ~f(t) at t = t0 to be ~f ′(t0) as defined above.

The acceleration vector at t = t0 is then defined to be ~f ′′(t0) whenever this vector is defined.
Similarly, we allow ourselves to integrate n-tuples of continuous (or more generally inte-

grable) functions coordinate by coordinate: if the coordinates of ~f(t) = (f1(t), . . . , fn(t))

are all integrable on [a, b], then we define
∫ b

a
~f(t) dt to be (

∫ b

a
f1(t) dt, . . . ,

∫ b

a
fn(t) dt). A

vector-valued function ~f(t) is then integrable on [a, b] if and only if its coordinate functions
are.

Thus much of the work we have done with real-valued functions of one variable carries
over at once to vector-valued functions. We have to be careful, though, when it comes
to theorems like the Intermediate Value Theorem asserting the existence of a number in
an interval on which a function f(t) takes a specified value. For example, suppose we

are given a continuous vector-valued function ~f(t) on an interval [a, b] and let ~f(a) =

(a1, . . . , an), ~f(b) = (b1, . . . , bn). Then it is certainly not true in general that if c1, . . . , cn
are any real numbers with ai ≤ ci ≤ bi for all i then there is t ∈ [a, b] with fi(t) = ci
for all i; certainly for all i there is ti ∈ [a, b] with fi(ti) = ci, but there is no reason to
expect all of the ti to be the same. Similarly, we cannot expect that there will be a single
t0 ∈ [a, b] such that fi(t) is maximized (or minimized) at t = t0 for all i. Finally, as we
observed last quarter even in the case n = 2, if the fi are all differentiable on (a, b) and
continuous on [a, b] there will not be a single c ∈ [a, b] such that f ′i(c)(b−a) = fi(b)−fi(a)
for all i (think of the case f1(t) = cos t, f2(t) = sin t, a = 0, b = 2π). We do at least get a

weak version of the mean-value theorem: if ||~f ′(t)|| < M for all t ∈ [a, b], then we must
have |fi(x)− fi(y)| < M |x− y| for all indices i and x, y ∈ [a, b], for otherwise there would

be some index i and z ∈ [a, b] with |f ′i(z)| ≥ M , whence ||~f ′(z)|| ≥ M . We also have



the following integral version of the Cauchy-Schwarz inequality: if ~f(t) is integrable on

[a, b], then ||
∫ b

a
~f(t) dt|| ≤

∫ b

a
||~f(t)|| dt. To see this let ~c =

∫ b

a
~f(t) dt. The result is obvious

if ~c = ~0, so assume ~c 6= ~0. Then ||~c||2 = ~c ·
∫ b

a
~f(t) dt =

∫ b

a
~c · ~f(t) dt ≤

∫ b

a
||~c||||~f(t)|| dt

by Cauchy-Schwarz. The last integral equals ||~c||
∫ b

a
||~f(t)|| dt and the result follows on

division by ||~c||.
What makes vector-valued functions of a real variable so tractable is that there are

only two ways to approach a real number, namely from the left or the right. Once we
consider functions of a vector variable, however, matters become quite different, as there
are infinitely many ways to approach even a point in the plane. For example, what is
the limit of f(x, y) = xy/(x2 + y2) the variables x, y both approach 0? At first we might
be tempted to say that the limit is 0, for if one of x or y is 0, then f(x, y) = 0, so
certainly limy→0 f(0, y) = limx→0 f(x, 0) = 0. On closer inspection, however, we notice
that f(x, x) = 1/2 for any x 6= 0, so there is no value of δ > 0 that will make |f(x, y)| < ε
whenever 0 < ||(x, y)|| < δ. We are forced therefore to say that lim(x,y)→(0,0) f(x, y) 6= 0;
in fact, the limit does not even exist. We will return to this example later and see that it
forces us to work pretty hard to define differentiability even for functions of two variables.


