Lecture 2-18

We continue with \mathbb{R}^n , treating lines and hyperplanes in this space. Our discussion generalizes that of the text, which covers lines and (ordinary) planes in \mathbb{R}^3 . To begin with lines, let \vec{p}_1, \vec{p}_2 be two distinct points in \mathbb{R}^n . A point on the unique lines determined by these points is then given by the sum $\vec{p}_1 + t(\vec{p}_2 - \vec{p}_1)$ of \vec{p}_1 and a multiple of the difference $\vec{p}_2 - \vec{p}_1$. Conversely, given any $\vec{p}, \vec{v} \in \mathbb{R}^n$ with $\vec{v}ne\vec{0}$, the set of all points $\vec{p} + t\vec{v}$ as t runs over \mathbb{R} is a line in \mathbb{R}^n and all such lines arise in this way. Thus we have parametrized lines in \mathbb{R}^n , just as we did earlier for curves in \mathbb{R}^2 , describing a typical point on such a line by an n-tuple $(p_1 + tv_1, \ldots, p_n + tv_n)$ of (rather simple) functions of t. We call the vector \vec{v} a direction vector for the line; note that \vec{v} can be replaced here by any nonzero multiple of itself to product another direction vector for the same line. Likewise the point \vec{p} could be replaced by $\vec{p} + t_0\vec{v}$ for any $t_0 \in \mathbb{R}$. Note also that lines in \mathbb{R}^n for any n > 2are too complicated to have their directions specified by single numbers; such lines do not have slopes. We say that two lines with direction vectors \vec{V}_1, \vec{v}_2 are *parallel* if \vec{v}_1, \vec{v}_2 are (necessarily) nonzero multiples of each other.

In \mathbb{R}^n for n > 2, unlike \mathbb{R}^2 , most pairs of nonparallel lines do not intersect. For example, consider the lines L_1, L_2 passing through (1, 1, 1) and (0, 0, 0), respectively, and with respective direction vectors (2, 4, 5) and (1, 2, 3). Clearly these lines are nonparallel; if they intersected, there would be real numbers s, t such that 1 + 2s = t, 1 + 4s = 2t, and 1 + 5s = 3t; but already the first two of these equations are inconsistent. If two lines do intersect, then the angle between them is defined to be the angle between their direction vectors; this is independent of the choice of direction vector for both lines. Sometimes one gives equations rather than a parametrization of a line; if the coordinates d_i of a direction vector (d_1, \ldots, d_n) are all nonzero, and if the line passes through the point (p_1, \ldots, p_n) , then one can specify this line by the equations $\frac{x_1-p_1}{d_1} = \ldots = \frac{x_n-p_n}{d_n}$.

We turn now to hyperplanes in \mathbb{R}^n . Rather than parametrizing these we usually describe them by a single equation: if (d_1, \ldots, d_n) is a nonzero vector and $a \in \mathbb{R}$, then the linear equation $(x_1, \ldots, x_n) \cdot (d_1, \ldots, d_n) = a$ defines a hyperplane in \mathbb{R}^n and all hyperplanes arise in this manner. We call (d_1, \ldots, d_n) a normal vector for the hyperplane; observe that such normal vectors, like direction vectors of lines, are well defined only up to a nonzero multiplicative scalar, since the equation $(x_1, \ldots, x_n) \cdot k(d_1, \ldots, d_n) = ka$ describes the same hyperplane as $(x_1, \ldots, x_n) \cdot (d_1, \ldots, d_n) = a$ if k is a nonzero number. Given a line and a hyperplane there are just three possibilities: either the line lies in the hyperplane, or it is parallel to the hyperplane, or it intersects the hyperplane in exactly one point. The line intersects the hyperplane in a point if and only if a direction vector for it is *not* orthogonal to a normal vector for the hyperplane. For example, the line L_1 defined above, passing through (1, 1, 1) and having direction vector (2, 4, 5), intersects the plane with equation x + y + z = 0 at the point (1 + 2t, 1 + 4t, 1 + 5t), where 1 + 2t + 1 + 4t + 1 + 5t = 3 + 11t = 0, so that t = -3/11. The point is thus (5/11, -1/11, -4/11).

Any two hyperplanes in \mathbb{R}^n intersect; the angle between them is defined to be the angle between their normal vectors.

A line in \mathbb{R}^n is a subspace of the latter (so that, by definition, the sum of two points on it is also on it) if and only if the line passes through the origin $\vec{0} = (0, ..., 0)$. Similarly,

a hyperplane in \mathbb{R}^n is a subspace if and only if it passes through the origin, or equivalently the right-hand side of the equation defining it is 0.

For n = 3, it is handy to have a general construction for producing a vector \vec{u} orthogonal to two given ones \vec{v}, \vec{w} (so that, for instance, if one is given that plane in \mathbb{R}^3 contains lines with direction vectors \vec{v}, \vec{w} , one can work out a normal vector for the plane). Fortunately, a general construction is available: we can always take $\vec{u} = \vec{v} \times \vec{w}$, provided that the vectors \vec{v}, \vec{w} are nonparallel (and if they are parallel, there will be not one but many choices for a vector orthogonal to both of them). Thus for example given the lines $L_1 = (1, 1, 1) + t(2, 4, 5)$ and $L_3 = (1, 1, 1) + s(2, 2, 3)$, the equation of the unique plane containing both of them is $2x + 4y - 4z = 2 \cdot 1 + 4 \cdot 1 - 4 \cdot 1 = 2$, since the cross product of (2, 4, 5) and (2, 2, 3) is (2, 4, -4).

Finally we give a formula that is sometimes useful for the distance from a point $\vec{P_1}$ to a line not containing it in \mathbb{R}^3 (given in the text on p. 677). Taking $\vec{P_0}$ to be any point on the line and \vec{d} to be a direction vector for the line this distance is given by the ratio $\frac{||(\vec{P_1} - \vec{P_0}) \times \vec{d}||}{||\vec{d}||}$, since if \vec{Q} is the projection of $\vec{P_1}$ to the line, then we may take $\vec{d} = \vec{Q} - \vec{P_0}$ (assuming $\vec{P_0} \neq \vec{Q}$) and then the required distance is $||\vec{P_1} - \vec{P_0}||\sin\theta$, where θ is the angle between the line from $\vec{P_0}$ to $\vec{P_1}$ and the line.