
Lecture 2-18

We continue with Rn, treating lines and hyperplanes in this space. Our discussion
generalizes that of the text, which covers lines and (ordinary) planes in R3. To begin with
lines, let ~p1, ~p2 be two distinct points in Rn. A point on the unique lines determined by
these points is then given by the sum ~p1 + t(~p2 − ~p1) of ~p1 and a multiple of the difference
~p2 − ~p1. Conversely, given any ~p,~v ∈ Rn with ~vne~0, the set of all points ~p + t~v as t runs
over R is a line in Rn and all such lines arise in this way. Thus we have parametrized
lines in Rn, just as we did earlier for curves in R2, describing a typical point on such a
line by an n-tuple (p1 + tv1, . . . , pn + tvn) of (rather simple) functions of t. We call the
vector ~v a direction vector for the line; note that ~v can be replaced here by any nonzero
multiple of itself to product another direction vector for the same line. Likewise the point
~p could be replaced by ~p + t0~v for any t0 ∈ R. Note also that lines in Rn for any n > 2
are too complicated to have their directions specified by single numbers; such lines do not
have slopes. We say that two lines with direction vectors ~V1, ~v2 are parallel if ~v1, ~v2 are
(necessarily) nonzero multiples of each other.

In Rn for n > 2, unlike R2, most pairs of nonparallel lines do not intersect. For
example, consider the lines L1, L2 passing through (1, 1, 1) and (0, 0, 0), respectively, and
with respective direction vectors (2, 4, 5) and (1, 2, 3). Clearly these lines are nonparallel;
if they intersected, there would be real numbers s, t such that 1 + 2s = t, 1 + 4s = 2t, and
1 + 5s = 3t; but already the first two of these equations are inconsistent. If two lines do
intersect, then the angle between them is defined to be the angle between their direction
vectors; this is independent of the choice of direction vector for both lines. Sometimes one
gives equations rather than a parametrization of a line; if the coordinates di of a direction
vector (d1, . . . , dn) are all nonzero, and if the line passes through the point (p1, . . . , pn),
then one can specify this line by the equations x1−p1

d1
= . . . = xn−pn

dn
.

We turn now to hyperplanes in Rn. Rather than parametrizing these we usually
describe them by a single equation: if (d1, . . . , dn) is a nonzero vector and a ∈ R, then
the linear equation (x1, . . . , xn) · (d1, . . . , dn) = a defines a hyperplane in Rn and all
hyperplanes arise in this manner. We call (d1, . . . , dn) a normal vector for the hyperplane;
observe that such normal vectors, like direction vectors of lines, are well defined only up to a
nonzero multiplicative scalar, since the equation (x1, . . . , xn) ·k(d1, . . . , dn) = ka describes
the same hyperplane as (x1, . . . , xn)·(d1, . . . , dn) = a if k is a nonzero number. Given a line
and a hyperplane there are just three possibilities: either the line lies in the hyperplane, or
it is parallel to the hyperplane, or it intersects the hyperplane in exactly one point. The line
intersects the hyperplane in a point if and only if a direction vector for it is not orthogonal
to a normal vector for the hyperplane. For example, the line L1 defined above, passing
through (1, 1, 1) and having direction vector (2, 4, 5), intersects the plane with equation
x+y+z = 0 at the point (1+2t, 1+4t, 1+5t), where 1+2t+1+4t+1+5t = 3+11t = 0,
so that t = −3/11. The point is thus (5/11,−1/11,−4/11).

Any two hyperplanes in Rn intersect; the angle between them is defined to be the
angle between their normal vectors.

A line in Rn is a subspace of the latter (so that, by definition, the sum of two points
on it is also on it) if and only if the line passes through the origin ~0 = (0, . . . , 0). Similarly,



a hyperplane in Rn is a subspace if and only if it passes through the origin, or equivalently
the right-hand side of the equation defining it is 0.

For n = 3, it is handy to have a general construction for producing a vector ~u or-
thogonal to two given ones ~v, ~w (so that, for instance, if one is given that plane in R3

contains lines with direction vectors ~v, ~w, one can work out a normal vector for the plane).
Fortunately, a general construction is available: we can always take ~u = ~v × ~w, provided
that the vectors ~v, ~w are nonparallel (and if they are parallel, there will be not one but
many choices for a vector orthogonal to both of them). Thus for example given the lines
L1 = (1, 1, 1) + t(2, 4, 5) and L3 = (1, 1, 1) + s(2, 2, 3), the equation of the unique plane
containing both of them is 2x+ 4y − 4z = 2 · 1 + 4 · 1− 4 · 1 = 2, since the cross product
of (2, 4, 5) and (2, 2, 3) is (2, 4,−4).

Finally we give a formula that is sometimes useful for the distance from a point ~P1

to a line not containing it in R3 (given in the text on p. 677). Taking ~P0 to be any point

on the line and ~d to be a direction vector for the line this distance is given by the ratio
||(~P1−~P0)×~d||

||~d||
, since if ~Q is the projection of ~P1 to the line, then we may take ~d = ~Q − ~P0

(assuming ~P0 6= ~Q) and then the required distance is ||~P1 − ~P0|| sin θ, where θ is the angle

between the line from ~P0 to ~P1 and the line.


