
Lecture 2-12

We return to Salas-Hille for the remainder of the course this term. We begin with
the basic object of study, namely the set Rn, consisting of all n-tuples (a1, . . . , an) of real
numbers ai; note that the n here is not an exponent. Note that the definition of Rn is
essentially the same as that of R3 in the text, replacing (a1, a2, a3) wherever it occurs by
(a1, a2, . . . , an), and indeed many proofs of theorems about Rn have the same property,
being essentially no more complicated for general n than for n = 3.

The first thing to say about Rn, using the language of the first week of last quar-
ter, is that it is an abelian group under addition, where we decree that (v1, . . . , vn) +
(w1, . . . , wn) = (v1 + w1, . . . , vn + wn); moreover, given (a1, . . . , an) ∈ Rn, c ∈ R there is
c(a1, . . . , an) = (ca1, . . . , can) ∈ Rn, such that c(~v+ ~w) = c~v+ c~w, (c+d)~v = c~v+d~v, 1~v =
~v, c(d~v)) = (cd)~v for all ~v, ~w ∈ Rn, c, d ∈ R. We express the full set of properties here
(involving vector addition, scalar multiplication, and the relationships between them) by
saying that Rn is a vector space over the field R; more generally, the set Kn of n-tuples over
any field K is a vector space over K. Note that a vector here is simply an element of a vec-
tor space; vectors do not have to be n-tuples, and indeed we will later see that certain sets
of functions are vector spaces as well. In Rn there is a notion of distance; by constructing
a suitable sequence of n−1 right triangles and repeatedly applying the Pythagorean Theo-
rem, we see that the distance ||~v|| between ~0 = (0, . . . , 0) and ~v = (v1, . . . , vn), also called
the norm of ~v, is

√∑
v2i ; similarly, the distance between (a1, . . . , an) and (b1, . . . , bn) is√∑

(bi − ai)2. We then have the triangle inequality for distances, which asserts for any
vectors ~v, ~w ∈ Rn that ||~v + ~w|| ≤ ||~v||+ ||~w||; we will prove this later, after we have intro-
duced the notion of the (real-valued) dot product of two vectors and proved the important
Cauchy-Schwarz inequality relating dot products to norms of vectors.

Historically, it took mathematicians a long time even to define Rn for n > 3; since
there was no immediate geometric interpretation even of R4, it did not occur to anyone to
define and study it. An interesting object that was introduced before Rn is the set H of
quaternions, consisting by definition of all sums a+ bi+ cj + dk, where a, b, c, d ∈ R. Such
sums are added and subtracted in the “obvious” way; we decree that (a1+a2i+a3j+a4k)±
(b1 + b2i+ b3j + b4k) = (a1± b1) + . . .+ (a4± b4)k. Matters become more interesting when
we multiply quaternions. The idea is first that j, k are analogous to the complex number i,
so that i2 = j2 = k2 = −1. Next we decree that ij = −ji = k, ki = −ik = j, jk = −kj = i
(so that multiplication is in particular noncommutative for the quaternions). The best
way to remember the multiplication rules is to visualize i, j, k as equally spaced around
a circle; then the rule is that the product xy of any two of them equals the other one
z if x, y are consecutive clockwise around the circle, while this product is −z if x, y are
consecutive counterclockwise. Now when we square the pure quaternion ai + bj + ck (so
called since its real part is 0), we get −a2−b2−c2, the negative of the square of the norm of
(a, b, c) regarded as a vector in R3. Moreover, if we define the conjugate of the quaternion
a + bi + cj + dk as a − bi − cj − dk (by analogy with conjugation of complex numbers),
then the product (a+ bi+ cj + dk)(a− bi− cj− dk) of any quaternion and its conjugate is
a2 + b2 + c2 + d2, the square of the norm of the corresponding vector (a, b, c, d) in R4. We
call this quantity the norm of the quaternion z = a + bi + cj + dk. Then it also turns out
that if we write N(z) for the norm of the quaternion z then we have N(zw) = N(z)N(w):



norms satisfy a kind of product rule. As an exercise, see if you can work out all possible
square roots of −1 in H. There are infinitely many of them!

Unfortunately this construction for n = 4 has no analogue for higher n (there is a
partial analogue for n = 8, but nothing at all along these lines for any other value of
n). In fact, the mathematician William Rowan Hamilton (who invented the quaternions
and whose name accounts for the letter H used to denote them) tried for many years
but failed to introduce a multiplication on R3 that would satisfy the above properties; it
was only much later (and with great reluctance) that he realized one additional dimension
was necessary, and that besides this a noncommutative multiplication was required. It
is no coincidence, by the way, that the notations i, j, k used for the quaternions are also
often used in physics to denote the standard unit coordinate vectors (1, 0, 0), (0, 1, 0), and
(0, 0, 1) in R3. There is another kind of product for vectors in R3 (this time vector-valued)
called the cross product whose definition will strongly remind you of multiplication in H.
The dot and cross products were originally defined only for R3 in terms of quaternionic
multiplication; it was realized only much later that the dot product can be defined for any
Rn. There is also a notion of “cross product” of n− 1 vectors in Rn, which gives another
vector in Rn. We will indicate how to define it when we discuss determinants of n × n
matrices next quarter.


