
Lecture 2-11

Convolutions arise in the solution to the tautochrone problem, which asks for the
shape that a wire should have if a bead slides down it without friction in such a way that
the time it takes to reach the bottom does not depend where on the wire it is released (p.
357 of the text). We begin with some remarks about this problem. At first it might seem
impossible that different beads released simultaneously at different points along the wire
could possibly reach the bottom at the same time, since beads released farther up have
more distance to travel; but on further reflection we notice that beads released farther
up are travelling at greater velocity when the reach the initial position of beads released
lower down, so it is at least conceivable that the beads all take the same time to reach the
bottom. Next, we might ask why a physicist might care about the answer to this problem.
The answer comes from clock building. In the old days, the most accurate clocks were
pendulum clocks; but all pendulum clocks lose energy over time, so that the arc through
the bob at the end of the pendulum gradually gets shorter and shorter. In order for the
pendulum not to lose time as this happens, we would like to know that the length of time
it takes for the bob to descend from the highest point of its arc to the bottom does not
depend on how high up the arc it goes. If the pendulum bob follows the arc of an inverted
cycloid this will indeed be the case, as we show below.

Suppose that one end of the wire is at (0, 0) and the wire lies in the first quadrant.
Let (a, b) be a point on the wire. For convenience we assume that the bead slides from
right to left, starting at (a, b) and winding up at (0, 0). Using our usual coordinates
x, y, and regarding the arclength s travelled by the bead as a function of y, we know
that f(y) = ds/dy is given by

√
1 + (dx/dy)2. The principle of conservation of energy

shows that the time it takes for the bead to slide from (a, b) to (0, 0) is given by T (b) =
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dy, where g is the gravitational constant. Note that this last expression is
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the formula for f(y) in terms of dx/dy, we get dx
dy =

√
2α−y
y where α = gT 2

0 /π
2. This last

differential equation is separable, but rather than solving it directly it turns out to be easier
to make the substitution y = 2α sin2(θ/2). Then dx/dy works out to be cos(θ/2)/ sin(θ/2).
Multiplying by dy/dθ we get dx/dθ = 2α cos2(θ/2) = α(1+cos θ), while y = 2α sin2(θ/2) =
α(1− cos θ). Integrating, we get x = α(θ+ sin θ), y = α(1− cos θ). These are not quite the
parametric equations of a cycloid, contrary to what is stated in the text, but if you start
with the cycloid corresponding to a circle of radius a (x = a(θ − sin θ), y = a(1 − cos θ)),
turn the graph upside-down (that is, reflect it about the line y = a), and then shift it
by aπ units to the left or right, then you get the graph of the given parametrization;
accordingly, we call this parametrized curve an inverted cycloid. Amazingly enough, the
inverted cycloid also turns out to be the solution to the brachistochrone problem, which
asks for the shape that the wire should have for the bead to slide from a fixed point on it to
the bottom in the shortest possible time. We do not have the tools necessary to prove this
(it requires techniques from the calculus of variations, which can be used to maximize or
minimize expressions depending on an unknown function by in effect differentiating with



respect to the function) but we did want to mention the remarkable coincidence of the
solutions of these two problems.

We conclude this unit by mentioning that the Laplace transform is a special case
of something called the Fourier transform, which attaches to every continuous function
f(x) the function f̂(t) =

∫∞
−∞(1/

√
2π)f(x)eixt dx for t ∈ R, defined whenever the integral

converges. If we start with a function f(x) defined only on [0,∞), extend it to all x ∈ R
by decreeing that it be 0 for x < 0, and multiply by a suitable constant, then the Fourier
transform of the resulting function, with the parameter t replaced by is, coincides with
the Laplace transform of f . Recall also that we have defined the Fourier coefficients of
a function f(x) defined on [−π, π] as the integral an = (1/π)

∫ π
−π f(x) cosnx dx or bn =

(1/π)
∫ π
−π f(x) sinnx dx for some n (replacing 1/π by 1/2π in the first integral if n = 0).

Then under suitable hypotheses on f(x) the Fourier series
∑∞
n=0 an cosnx+

∑∞
n=1 bn sinnx

converges to f(x) for all x ∈ [−π, π]; note however that the Fourier series of f(x) necessarily
defines a periodic function with period 2π, so cannot converge to f(x) for |x| > π unless f

also happens to be periodic. By contrast, the Fourier transform f̂(t) is not periodic in t,
so that Fourier transforms can be used to yield important information about non-periodic
functions that are not necessarily the sums of their Fourier series.

For the rest of the course we will focus on higher dimensions (than one) and return
to Salas-Hille. We will see that vector-valued functions sending t ∈ R to the n-tuple
(f1(t), . . . , fn(t)) with the fi differentiable can be handled fairly easily with the tools that
we already have but real-valued functions f(x1, . . . , xn) of n real variables are considerably
harder to understand; it will take substantially more work to decide when such functions
are differentiable and what their derivatives are.


