
Lecture 2-10

We illustrate the use of Laplace transforms in solving equations involving Dirac delta
functions. Consider the equation 2y′′ + y′ + 2y = δ(t− 5), together with the usual initial
conditions y(0) = y′(0) = 0 (p. 346 in the text). Taking Laplace transforms, we get

(2s2 + s + 2)Y (s) = e−5s, whence Y (s) = e−5s

2s2+s+2 = e−5s
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. Taking the inverse

transform, we get y(t)) = 2√
15
u5(t)e−t−5)/4 sin

√
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4 (t − 5). Once again the solution is not

actually twice differentiable at t = 5, but does have left and right second derivatives there,
though this time we cannot compare these to the left and right second derivatives of δ(t−5)
as δ(t− 5) is not a function defined on numbers.

We have mentioned that there is no general formula for the Laplace transform Lfg
of the product of fg of two functions f, g in terms of the transforms of the factors; but
curiously enough there is a formula for the inverse Laplace transform of a product. To
derive it we need to define a new kind of “product” for functions. Given continuous
functions f, g of a real variable, their convolution h = f ∗g is defined by the formula h(t) =∫ t
0
f(t − τ)g(τ) dτ =

∫ t
0
f(τ)g(t − τ) dτ ; observe that (as with the Laplace transform) the

integration takes place with respect to the variable τ and thereby defines a function of the
other variable t. Note that convolution is easily seen to be commutative and distributive;
it also turns out to be associative ((f ∗ g) ∗ h = f ∗ (g ∗ h)); but there is no multiplicative
identity for convolution; that is, there is no function g such that f ∗ g = g ∗ f = f for all
f . Also it is quite easy to show that the convolution f ∗ f of a function with itself need
not be nonnegative. For example, the identity function f(τ) = τ , if convolved with itself,

gives the function
∫ t
0
τ(t− τ) dτ = (− τ

3

3 + τ2

2 )|t0 = t3/6.

Now we claim that the Laplace transform of f ∗ g is the product LfLg of the Laplace
transforms of f and g. To prove this, we look at the integral

∫∞
0

∫ t
0
f(t− τ)g(τ)e−st dτ dt

defining Lf ∗g. This integral is a double integral taking place in the tτ -plane, taking place
over the region where t ≥ 0 and 0 ≤ τ ≤ t. We can introduce a new coordinate u = t− τ
and then describe this region by the inequalities τ ≥ 0, u ≥ 0. Writing e−st as e−sτe−su we
can then rewrite the integral as

∫∞
0

∫∞
0
e−sτg(τ)e−suf(u) dτ du. Now the variables have

been completely separated; evaluating each integral in turn with respect to its variable
and treating the other variable as a constant, we get Lf(s)Lg(s), as desired.

Using convolutions we get an explicit expression for the solution to a nonhomogeneous
equation ay′′ + by′ + cy = g(t) in terms of the forcing function g(t) on the right side
(p. 353 of the text). Imposing the initial conditions y(0) = y0, y

′(0) = y1 and taking
Laplace transforms, we get (as2 + bs + c)Y (s) − (as + b)y0 − ay1 = G(s); letting Φ(s) =
(as+b)y0+ay1
as2+bs+c ,Ψ(s) = G(s)

as2+bs+c , we can write Y (s) = Φ(s) + Ψ(s), whence y = φ(t) + ψ(t),
where φ, ψ are the respective inverse transforms of Φ,Ψ. Here φ(t) is our old friend the
solution to the homogeneous initial-value problem ay′′+by′+cy = 0, y(0) = y0, y

′(0) = y1,
while ψ(t) solves the inhomogeneous problem y′′+ay′+by = g(t), y(0) = y′(0) = 0. Writing
Ψ(s) as H(s)G(s), where H(s) = 1

as2+bs+c and h(t) is its inverse Laplace transform, we can

write ψ(t) = h∗g =
∫ t
0
h(t−τ)g(τ) dτ ; this is equivalent to the formula we obtained before

by variation of parameters, but is expressed in different terms, not explicitly involving any
particular solutions to the homogeneous equation. We can think of h(t) as the solution to



the inhomogeneous problem ay′′+ by′+ cy = δ(t), y(0) = y′(0) = 0; it is called the impulse
response, while H is called the transfer function. In words, then, ψ(t) is the convolution
of the impulse response and the forcing function.


