FINAL EXAM

Math 135A

name

The questions are weighted equally. Use the backs of the test pages as necessary.

1. Let $f(x,y) = \frac{x^3+y^3}{x^2+y^2}$ if $(x,y) \neq (0,0)$ while f(0,0) = 0. Determine with proof whether or not f is differentiable at (0,0). (First compute the partial derivatives of f at (0,0) and then decide whether or not the definition of differentiability is satisfied with these values of the partial derivatives.)

2. Find a parametrization of the ellipse with equation $\frac{x^2}{4} + \frac{y^2}{9} = 1$ and integrate $x \, dy$ with respect to t over a suitable interval to find the area enclosed by this ellipse.

3. Find the set of values of x for which $\sum_{n=0}^{\infty} (x+4)^{-n}$ converges.

4. Given the linear differential equation ay'' + by' + cy = 0 with positive constant coefficients a, b, c, show that the 0 solution is asymptotically stable (i.e. all solutions y(t) approach 0 as $t \to \infty$).

5. Use Laplace transforms to express the unique solution to $y^{(3)} - y = g(t)$ with y(0) = y'(0) = y''(0) = 0 as a convolution integral. Here g(t) is a continuous function.

6. Let L_1, L_2 be the lines through (2, 5, -3) and (4, 9, 5), respectively, with respective direction vectors (3, 7, 2) and (2, 6, -12). Determine whether or not L_1 and L_2 intersect, and if so at which point.

7. Let $\sum_{n=0}^{\infty} a_n x^n$ be a nonzero power series solution to the differential equation $y' - x^2 y = 0$. Say as much as you can about the coefficients a_n .

8. Find the unit principal normal vector to the parametrized curve $(\cos t, \sin t, \cos 2t, \sin 2t)$.