Lecture 1-7

Continuing with parametrized curves, let C = {(f(t),g(t) : t € [a, b]} be such a curve
with f and g have continuous derivatives on [a,b]. In order to define the arclength of C, it
is reasonable to start with a partition P = {xq,... ,x,} of [a, b], say one with equal lengths
for simplicity, look at the sum Y., \/(f(t:) — f(ti—1)? + (g(t:) — g(ti—1)? of the lengths
of the line segments joining (f(t;—1,9(ti—1)) to (f(t;),g(t;)) for 1 < i < n, and take the
limit as this sum as n — oco. Recalling that each subinterval of P has length (b—a)/n and
applying the Mean-Value Theorem, we can rewrite the sum as =% 3" /f"(u;)2 + ¢/ (v;)2,
for some u;, v; lying between ¢;_; and t;. While the resulting sum is not quite a Riemann
sum for I = f; V()2 + ¢/ (t)2dt (since u;,v; can differ), it comes close enough that we
can identify the limit of this sum as the integral for I; we therefore define the arclength
of C to be the integral ff V/ f'(t)? + ¢/ (t)? dt. The physical interpretation of the integrand
VI (t)% + ¢/ (t)? is the speed of a particle moving so that its position at time ¢ is (f(¢), g(t));
then the arclength in question is just the distance travelled by the particle as ¢ runs over
[a,b]. In particular, the graph segment of a function y = f(z) between z = a and x = b

has arclength f; 1+ f(x)? dx, assuming f(z) has a continuous derivative on [a, b]. The
ordered pair (f'(t),g'(t)) is called the velocity or tangent vector to the curve; it measures
how fast both the x- and y-coordinates of a point travelling along it are changing at any
time.

Of course the presence of the square root sign in the integrand makes the integral
difficult or impossible to evaluate in most examples. Fortunately, as we will see below,
the expression for the derivative of the arclength is sufficient for many applications; one
does not need an expression for the arclength itself. We will look at two families of curves,
each indexed by a single parameter, which are such that only one value of the parameter
allows the arclength integral to be computed (apart from trivial cases). In the first case,
we let ¢ be a positive constant and consider the family of graphs (¢, d cosh ct) of graphs of
functions y = dcosh ct, where d is another (nonzero) constant. The arclength integrand

is then \/1 + c2d2 sinh? ct: only if d = 1/¢ can we evaluate the integral. In that case the

integrand simplifies to v/1 + cosh? ¢t = sinh ¢t and the arclength between ¢t = 1 and t = b
is just w. Amazingly enough, this one computable case turns out to be the most
important one in physics: the shape of a homogeneous, flexible, inelastic rope hanging
between two fixed points is given by a graph of this form for some ¢ (called a catenary; see
Exercise 10.7.54).

In the second case we consider the path traced by a point on a wheel of radius a that
rolls without slipping down the positive z-axis, starting on the y-axis. We can work out
the equation of the point’s motion by breaking it down into two simpler motions. The
center of the wheel traces the ray corresponding to the graph of y = a for x > 0, so that
its position at time t is (at,a). Meanwhile, the point traces a circle of radius b clockwise
around the center, starting at distance b < a directly below it; its position at time ¢ relative
to the center is (—bsint, —bcost). Putting the two motions together (in physical terms,
superposing them), we get the formula (at — bsint, a — bcost) for the position of the point
at time ¢. Here the integrand for the arclength is v/a2 + b2 — 2abcost. Apart from the
trivial case b = 0 the only value of b leading to a computable integral is a; in this case




the integrand /2a?(a — cost) simplifies to 2asin(1/2)t, so that the distance travelled by
the point between t = 0 and ¢t = ¢y is 4a(—cos(to/2) + 1), or 8a if the point goes all
the way around the wheel once. The curve is called a cycloid in this case and a trochoid
in general (if b < a). Once again, we are most fortunate that cycloids turn out to be
much more important than trochoids. We will return to cycloids and closely related curves
called inverted cycloids later; the latter curves provide a solution to a famous 17th century
problem in physics called the brachistochrone problem, which asks for the shape that a
frictionless wire joining two fixed points should have for a bead sliding along it and acted
on only by gravity to get to the bottom point from the top one in the shortest time.

Given a curve with parametrization (f(t),g(t)) for ¢t € [a,b], we might be interested
in other curves traversing the same set of points in the same order. Such curves are given
by the parametrization f(h(s),g(h(s)) for s € [c,d], where h is a differentiable strictly in-
creasing function taking the interval [c, d] to [a, b] (so that h(c) = a, h(d) = b). Computing
(f(h(s)),g(h(s))) by the chain rule, we get h'(s)(f(h(s),g(h(s)); thus both coordinates
of the tangent vector at any point of the curve are replaced by the same positive constant
multiple of themselves and in particular the slope of the tangent line to the curve at any
point remains unchanged. If instead h is strictly decreasing, then the same calculation
applies, except that the multiplying constant h’(s) is negative rather than positive. Thus
the slope of the tangent line to a curve depends on the curve only as a set of points and
a direction of motion; the only difference between two parametrizations of the same set
of points in the same order comes from the speed of the moving particle at a given time.
For example, the curve given by (cost,sint) traces the unit circle once counterclockwise
at constant speed equal to 1 as t runs over [0, 27]; the curve given by (cost?,sint?) traces
the same circle once counterclockwise, but this time at steadily increasing speed, as ¢ runs
over [0,4/27]. On the other hand, the pair (cost, —sint) traces the same circle at unit
speed, but this time clockwise.

In particular, we can give an intrinsic parametrization of any curve given the set of
points on it and a direction of motion. To do this we fix one point arbitrarily as the initial
one and decree that a particle start at this point and move in such way that at time ¢ it
has moved distance exactly t along the curve. A curve parametrized in this way is said
to be parametrized by arclength; we usually label the parameter by s rather than ¢ in
this case. Thus a curve is parametrized by arclength if and only if its speed is constantly
equal to 1. We can study the geometry of the set of points corresponding to this curve by
differentiating the angle between its tangent line and the x-axis with respect to arclength.
We do this next time.



