
Lecture 1-29

We now review the material covered so far for the midterm on Friday. This will
concentrate primarily on series, particularly power series, together with the existence-
uniqueness theorem for first-order linear and nonlinear equations and exact equations.

By definition any series
∑∞

n=1 an is a certain kind of sequence, namely the sequence
of its partial sums sn =

∑m
n=1 an; thus the series converges if and only if sn has a finite

limit as n → ∞. The basic examples where this limit can be computed explicitly are the
geometric series

∑∞
n=0 ar

n, which converges (for a 6= 0 exactly when |r| < 1, to a/(1− r),
and the telescoping series

∑∞
n=1(bn−bn+1) for some sequence (bn), which converges exactly

when the sequence (bn) does, to b1− (limn→∞ bn). We work out the convergence behavior
of other series by comparing them to one of these series. Thus if

∑
an,

∑
bn both have

nonnegative terms and an ≤ bn for sufficiently large n, then
∑
an converges whenever∑

bn does and
∑
bn diverges whenever

∑
an does. In particular, we get another proof

that the series S =
∑∞

n=1(1/n2) converges: comparing the series
∑∞

n=2(1/n2) consisting of
all terms but the first of S to the telscoping series

∑∞
n=1 1/n(n+ 1), which converges to 1,

we deduce that S converges to a number less than 1+1 = 2 (in fact, to π2/6). We also have
the integral test, which says that given a series S =

∑
an with nonnegative terms such

that an = f(n) for some continuous nonnegative function f(x) decreasing to 0 as x→∞,
the seres S converges if and only if the improper integral

∫∞
1
f(x) dx does. Using either

this test or the Cauchy condensation test, we get that the p-series
∑∞

n=1(1/np) converges
if and only if p > 1.

The ratio and root tests provide convenient methods for deciding whether series con-
verge absolutely without having to compare them to other series; recall that a series con-
verges whenever it converges absolutely. Given a series

∑
an, the ratio test asserts that it

converges absolutely whenever lim |an+1/an| < 1 and diverges whenever lim |an+1/an| > 1;
similarly the root test asserts that

∑
an converges absolutely whenever lim |an|1/n < 1 and

diverges whenever lim |an|1/n > 1. The case where the limit equals 1 is an indeterminate
one for both tests; they fail in this case to give definitive information. One of the main
applications of the ratio test is to power series

∑
anx

n and Taylor series
∑
an(x − a)n.

Recall first that any power or Taylor series has a radius of convergence R, so that if con-
verges absolutely if |x| or |x− a| is less than R and diverges if |x| or |x− a| is larger than
R. (The cases where |x| or |x − a| equals R are deliberately left ambiguous; we allow
either convergence or divergence in these cases.) Given a power or Taylor series

∑
anx

n or∑
an(x− a)n such that lim |an+1/an| = L, its radius of convergence R equals 1/L, where

we agree for this purpose that R = 0 if L =∞ and conversely.
Any power or Taylor series with a positive radius of convergence defines an in-

finitely differentiable function within the radius of convergence, whose derivative has
a series obtained from the original one by differentiating each term; thus if f(x) =∑
an(x − a)n for |x − a| < R and R > 0, then f ′(x) =

∑∞
n=1 nan(x − a)n−1. Also

any Taylor series can be integrated term by term: under the same hypothesis on f , we
have

∫ x

a
f(t) dt =

∑∞
n=0(an/n + 1)(x − a)n+1. For any infinitely differentiable function

f(x) its Taylor series at x = a is defined to be
∑∞

n=0 f
(n)(a)/n!(x − a)n (whether or

not this series converges to f(x)). If f(x) is the sum of its Taylor series in some inter-
val (a − R, a + R) with R > 0, then we call f(x) analytic at x = a. Some very well-



known examples of analytic functions are ex =
∑∞

n=0 x
n/n!, e−x =

∑∞
n=0(−1)nxn/n!, and

sinx =
∑∞

n=0(−1)nx2n+1/(2n + 1)!, cosx =
∑∞

n=0(−1)nx2n/(2n)!; in all cases the radius
of convergence is infinite. Examples of power series with a finite radius of convergence
include 1/(1−x)

∑∞
n=0 x

n and − ln(1−x) =
∑∞

n=0 x
n+1/(n+ 1), both with radius of con-

vergence 1, and arctanx =
∑∞

n=0(−1)nx2n+1/(2n+ 1), also with radius of convergence 1.
Whenever a power or Taylor series with a finite radius of convergence happens to converge
at one or both endpoints of the interval of convergence, it always converges to the “right”
value, that is, the limit of its values as x approaches the endpoint. Thus, since the series of
ln(1 + x), namely

∑∞
n=1(−1)n+1xn/n, converges at x = 1 (by the alternating series test),

its sum there must be the limit of ln(1 + x) as x → 1−, namely ln 2. Similarly, we must
have ±π/4 = ±

∑∞
n=0(−1)n/(2n+ 1).

Turning now to differential equations, the first (and hardest) new result we have
seen this quarter is the existence-uniqueness theorem: given the initial-value problem
y′ = f(t, y), y(t0) = y0, if both f(t, y) and its y-partial fy(t, y) exist and are continuous
on some rectangle R having (t0, y0) in its interior, then there is a unique solution to this
problem, whose graph exists up to the boundary of R. Here the y-partial fy is obtained
from f by differentiating (as usual) with respect to y, treating t as a constant. In particular,
the solution must be defined at least on some open interval (t0 − ε, t0 + ε) containing t0.
In the case of a first-order linear equation p(t)y′ + q(t)y = r(t), one can say a little more:
given any initial condition y(t0) = y0, the unique solution must be defined on any interval
on which p, q, r are all defined and continuous and the coefficient p(t) of y′ is not 0.

We also learned that an exact equation, that is, one of the form p(x, y) dx+q(x, y) dy =
0, where there is a function f(x, y) such that fx = p, fy = q, admits the general solution
f(x, y) = c where c is an arbitrary constant. In turn, to determine whether there is an f
with fx = p, fy = q, it suffices in most cases to compute whether py = qx.


