
Lecture 1-28

We will now be spending some time on differential equations, supplementing the ma-
terial we learned last quarter from Salas-Hille with new material from the new textbook,
Boyce-DiPrima. This will take up much of February; we will return later to Chapters 13
and 14 of Salas-Hille.

We saw last time that the initial-value problem y′ = f(t, y), y(t0) = y0 always has
a unique solution whenever f(t, y) and its y-partial fy(t, y) exist and are continuous in a
rectangle [a, b]× [c, d] containing the point (t0, y0) in its interior (a, b)× (c, d); the graph of
this solution exists up to the boundary of [a, b]×[c, d]. We now observe that the hypotheses
on f are necessary to guarantee the uniqueness of the solution; the equation y′ = 3y2/3

coupled with the condition y(0) = 0 admits two solutions, namely y(t) = t3 and y(t) = 0.
In fact, this problem admits infinitely many solutions: for any c ≥ 0 the function fc(t)
defined to be 0 if t ≤ c and (t− c)3 if t ≥ c is a solution. The problem here is that the y-
partial of 3y2/3 blows up at y = 0, so there is no constant M with |3y2/3| = 3y2/3 ≤M |y|
for all y. The other hypothesis (that f(x, y) is continuous) is clearly also necessary as
well even to guarantee the existence of one solution, since for example most discontinuous
functions f(t) even of just one variable t are not derivatives, so that the equation y′f(x) as
no solution. Another theorem (which we will not prove) asserts that the above initial-value
problem always has at least one solution whenever f(t, y) is continuous on [a, b]× [c, d].

Now we want to generalize the separable first-order equations that we saw last quarter
to a larger class of equations which can be solved in much the same way. Recall first that
given any function f(x, y) of two variables such that f is differentiable with respect to x
for each fixed y and differentiable with respect to y for each fixed x, we write fx = ∂f/∂x
and fy∂f/∂y for the derivatives of f with respect to x and y. These are called the partial
derivatives (or just partials) of f and will be used later to determine which functions f(x, y)
are differentiable as functions of two variables and what their derivatives are. For now we
just mention that the chain rule we saw last quarter has an analogue for functions of several
variables: given a function F (x, y) whose x- and y-partials exist, suppose that y is itself
a differentiable function of x, so that the composite function F (x, y(x)) is a a function of
x alone. Then we have the formula dF/dx = Fx + Fy(dy/dx) for the derivative of F with
respect to x. In particular, if the function y(x) is such that F (x, y(x)) is constant, then we
must have Fx + Fy(dy/dx) = 0, so that dy/dx = −Fx/Fy at any point (x, y(x)) such that
Fy(x, y(x)) 6= 0. Now suppose we are given the differential equation y′ = g(x, y)/h(x, y).
If there is a function F (x, y) such that Fx = −g(x, y) and Fy = h(x, y), then the implicit
equation F (x, y) = c for some constant c, assumed to define y uniquely as a function
of x (subject to the further requirements that F (a, b) = c for specified numbers a, b and
that y(x) be close to b if x is close to a), will then be such that y′ = g(x, y)/h(x, y), as
desired; moreover, any solution y(x) to this equation must have dF (x, y(x)/dx = 0, so
that F (x, y(x) must be a constant. The upshot is that we have found the general solution
to the equation y′ = g(x, y)/h(x, y), since for any specified point (x0, y0) the implicit
equation F (x, y) = F (x0, y0) defines the unique solution to our equation satisfying the
initial condition y(x0) = y0. By the way, the original equation y′ = −g(x, y)/h(x, y) is
often rewritten in this situation as g(x, y) dx + h(x, y) dy = 0.

We are thus led to the question of deciding for a given pair of functions g(x, y), h(x, y)



whether there is a third function F (x, y) such that Fx = g, Fy = h. Any differential
equation y′ = −g(x, y)/h(x, y) for which there is a function F with this property is called
exact. Now it turns out that the second-order partials Fxy, Fyx of any differentiable func-
tion F (x, y) of two variables, obtained respectively by partially differentiating Fx and Fy

with respect to y and x, are equal whenever both are continuous. Hence a fundamen-
tal necessary condition that there be an F with Fx = g(x, y) and Fy = h(x, y) is that
gy(x, y) = hx(x, y). In most cases this necessary condition is also sufficient. For example,
given g(x, y) = y, h(x, y) = x+ y2, we find that gy = hx = 1, so we expect that there is an
F with Fx = g, Fy = h. To find F , start by integrating g with respect to x to get F1 = xy.
Now the y-partial (F1)y = x, so we need to add a function f(y) of y alone to F1 (so that
it does not affect the x-partial of F1) to obtain the F we are looking for. A suitable choice
is f(y) = y3/3, so that F (x, y) = xy + y3/3 has the desired properties. Thus the exact
equation y dx + (x + y2) dy = 0 has the general implicit solution F (x, y) = xy + y3/3 = c
for some constant c.

In particular, any separable equation f(x) dx + g(y) dy = 0 is automatically exact,
for given antiderivatives F (x), G(y), of f, g, respectively, we have Hx = f(x), Hy = g(y),
where H(x, y) = F (x) + G(y). Thus the discussion here completely recovers what we said
about separable equations last quarter.


