
Lecture 1-27

We now return to differential equations and start with a new textbook, the Boyce-
DiPrima book mentioned in the syllabus and on the website. We will begin with the initial-
value problem y′ = f(x, y), y(x0) = y0 mentioned last quarter, where f(x, y) is a continuous
real-valued function on a closed rectangle R = [a, b] × [c, d] with (x0, y0) ∈ (a, b) × (c, d).
We also assume that f is differentiable as a function of y ∈ [c, d] for each fixed x ∈ [a, b]
and that the derivative fy of f with respect to y is continuous on R. Then this problem
has a unique solution y = g(x), whose graph exists up to the boundary of [a, b]× [c, d]. To
prove this we begin (by way of motivation) with a sequence of numbers that nothing to

do with differential equations. It is defined recursively by a1 =
√

2, an+1 =
√

2
an

. What
is limn→∞ an? This seems quite hard to work out until we hit on the observation that the

limit L must satisfy
√

2
L

= L, whence it follows that L = 2.

What can this sequence possibly have to do with differential equations? To answer
this question we first reformulate the initial-value problem. Consider the operator F taking
the continuous function g on [a, b] to the function Fg = y0 +

∫ x

x0
f(t, g(t)) dt. This function

F (g) satisfies F (g)(x0) = y0 and F (g(x))′ = f(x, g(x)), by the Fundamental Theorem fo
Calculus, so if we can find a F -fixed point, meaning a function g(x) with Fg(x) = g(x),
then we will have solved our initial-value problem. Here is where the sequence comes into
the picture: we argued that its limit is a fixed point of the function sending x to

√
2
x
. In

our function setting, if we start with an arbitrary function g0 on [a, b], say the constant
function y0, and define gn(x) = Fn(g0)(x), then the limit of gn(x) as n → ∞ should be
the fixed point of F that we are looking for.

But why should this limit exist? To answer this question we need to define a notion
of distance between two continuous functions G,H on a closed bounded interval I: we
take this distance d(G,H) to be maxx∈I |G(x) − H(x)| (which is finite). Then it is easy
to check that d(G,H) = 0 if and only if G = H and d(G,H) ≤ d(G,K) + d(K,H) for
any continuous function K on I. Returning now to the given function f(x, y), both it and
fy(x, y) are continuous on R and so there is an upper bound M for both f(x, y) and fy(x, y)
on this rectangle R (extending a theorem we proved about continuous functions of one real
variable last quarter to two variables). Moreover, if (x, y1), (x, y2) both belong to R, then
by the mean-value theorem f(x, y2)− f(x, y1) = (y2− y1)fy(x, y3) for some y3 between y1
and y2, whence |f(x, y2) − f(x, y1| ≤ M |y2 − y1|. Now choose a positive number h small
enough that both Mh = α < 1 and S = [x0 − h, x0 + h]× [y0 −Mh, y0 +Mh] ⊂ R. Then
any continuous function f1 defined on I = [x0− h, x0 + h] such that |f1(x)− y0| ≤Mh for
all x ∈ I (i.e., whose graph stays in S) is such that |F (f1)(x)− y0| = |

∫ x

x0
f(t, f1(t)) dt| ≤

M |x − x0| ≤ Mh, so the graph of F (f1) continues to stay in S. Furthermore any two
continuous functions f1, f2 whose graphs both stay in S are such that d(F (f1), F (f2) =
maxx |

∫ x

x0
f(t, f1(t)) − f(t, f2(t))| dt ≤ αd(f1, f2); that is, applying F makes the distance

between any two functions whose graphs lie in S at most α times what it was before.

Setting g0 equal to the constant function y0 on [x0 − h, x0 + h] and gn the result of
applying F to g0 n times, we are ready to investigate the sequence {gn} of functions. For
any x ∈ I, the absolute value |g0(x)−g1(x)| is at most the distance d(g0, g1) between g0 and
g1, the absolute value |g1(x)−g2(x)| is at most d(g1, g2) ≤ αd(g0, g1), and so on; the upshot



is that gn(x) − gn+1(x)| ≤ αnd(g0, g1), whence the sequence g0(x), g1(x), . . . is uniformly
Cauchy and the sequence gn of functions converges uniformly to a continuous limit g. Then
by continuity F (g) = limn→∞ gn+1 = g, so g is indeed the fixed point we are looking for.
Moreover, there cannot be more than one fixed point, for if g, h are both fixed by F , then
d(F (g), F (h)) = d(g, h); but we have already seen that d(F (g), F (h)) ≤ αd(g, h) < d(g, h),
a contradiction.

Thus there is indeed a unique solution to the equation y′ = f(x, y) with y(x0) = y0. If
the graph of this solution does not exist all the way to the boundary of R, then let (x′0, y

′
0)

be the rightmost point on this graph and set up a new initial-value problem with the same
differential equation y′ = f(x, y) but now the initial condition y(x′0) = y′0. The unique
solution to this new problem agrees with the old one where both are defined, by uniqueness,
so by putting these solutions together we get a new unique solution whose graph properly
extends that of the old one. Iterating this process as many times as necessary we eventually
get a unique solution whose graph exists all the way to the boundary of R, as desired.

A simple but instructive example of the above construction arises from the initial-
value problem y′ = y, y(0) = 1. Following the notation of the above proof, we get g0 =

1, g1 = 1 +
∫ t

0
1 dx = 1 + t.g2 = 1 +

∫ x

0
(1 + t) dt = 1 + t+ t2/2, and so on; here the limit g

of the gi is the power series
∑∞

i=0 t
i/i!, which you recognize as our old friend et. Note that

in general we cannot predict where the graph of the unique solution leaves the boundary
of the rectangle R; for example, given the initial-value problem y′ = y2 + 1, y(0) = 0, the
unique solution y = tanx blows up at x = ±π/2. It is by no means obvious from the
differential equation y′ = y2 +1 alone that the solution blows up for a finite x; all we know
in advance is that the solution must be defined on some interval containing x = 0.


