
Lecture 1-24

We wrap up power series with a practical discussion of how they can be used to
approximate the values of functions at points to a specified accuracy; this is what your
calculator has to do when you punch the appropriate buttons on it, with the accuracy
required being governed by the size of the display. Given any (n+ 1)-times differentiable
function and a point a, we have the nth Taylor polynomial of f and a, defined to be the
nth partial sum Tnf =

∑n
i=0(f (i)(a)/i!)(x − a)i of the Taylor series of f at a. Without

necessarily having to assume that f is the sum of its Taylor series, we can ask how closely
Tnf(x) approximates f(x) for x near a. The most convenient answer for most purposes
is given by Taylor’s formula with the Lagrange remainder, which asserts that f(x) =
Tnf(x)+Rn+1(x), where the nth remainder term Rn+1(x) = (f (n+1)(c)/(n+1)!)(x−a)n+1

for some c between a and x; note that the special case n = 0 is just the Mean-Value
Theorem. If we have a bound for f (n+1)(x) for x in a suitable interval around a, then we
can use this remainder to fund an upper bound for the error |f(x)−Tnf(x)| in this interval.
For example, if f(x) = ex and a = 0, then of course f (n)(x) = ex, an increasing function, for
all nonnegative integers n, whence we can take ea+d to be an upper bound for f (n)(x) on any

interval [a−d, a+d]. Thus we can estimate say e1 as the sum
∑6
n=0 1/n! of the first seven

terms of Taylor expansion at a = 0 with an error at most e/7! < 3/7! = 1/1680 < 0.0006,
that is, with an error of at most 6 in the fourth decimal place. (The actual error is less
than 3 in the fourth decimal place.) More generally, the same argument shows that Tne

x

approximates any eX with an error of at most (eX/(n+ 1)!)Xn+1 (for X > 0); since this
last quantity goes to 0 as n goes to infinity for any fixed X, we get a new proof that ex

is the sum
∑∞
n=0 x

n/n! of its Taylor series for any x > 0, which easily extends to show
that the same is true for any x ∈ R. This is actually the approach taken by this text and
most others to show that the exponential function ex is analytic and that its power series
has infinite radius of convergence (in §12.6); but I have preferred to treat Taylor series
before Taylor polynomials as most students find the former more elegant and intuitively
appealing.

A similar but more powerful argument shows that sinx and cosx are also both analytic
at x = 0 (or any other point); it is more powerful since we have the easier and uniform
upper bound of 1 for any |f (n)(x) if f(x) = sinx or f(x) = cosx. We also see (for example)
that sin 0.5 is approximated by the sum 0.5− (0.5)3/6 = 23/48 of just the first two terms
of its Taylor series with an error of less than 0.001; see Example 7 in the text on p. 610.
Note also that the sum of any alternating series

∑∞
n=0(−1)nan with an ≥ an+1 ≥ . . .→ 0

as n → ∞ is overestimated by any odd partial sum
∑2m
n=0(−1)nan and underestimated

by any even partial sum
∑2m+1
n=0 (−1)nan, with error bounded by the absolute value of the

next term in both cases. This last bound is sometimes better than the one coming from
the Lagrange remainder.

We conclude our treatment of power series with a brief look at another way to represent
functions as infinite sums, namely as Fourier series. We have defined these already, at least
in a special case; in general, given a continuous function f(x) on the interval [−π, π], set
an = (1/π)

∫ π
π
f(x) cosnx dx for n > 0 and a0 = (1/2π)

∫ π
−π f(x) dx; for n > 0 we set

bn = (1/π)
∫ π
−π f(x) sinnx dx. The series

∑∞
n=0 an cosnx +

∑∞
n=1 bn sinnx is called the



Fourier series of f(x); note that it is defined for any continuous function f , so that one can
potentially represent much larger class of functions by Fourier series than by power series.
This potential is in fact realized; although not every continuous function is the sum of its
Fourier series at every x ∈ [−π, π] there are rather weak conditions that guarantee this;
for example, every differentiable function on (−π, π) is the sum of its Fourier series at any
point in this open interval. There are some caveats, however; perhaps the most serious
one is that Fourier series are set up in such a way that they can only represent periodic
functions with period 2π. Thus the Fourier series of a differentiable function f(x) on [π, π]
converges to f(±π) at the endpoints ±π only if f(π) = f(−π) (in general, the Fourier series
of any such f(x) converges at ±π to the average (1/2)(f(−π) + f(π)). Something similar
is going on with the example

∑∞
n=1 sin(nx)/n we mentioned earlier; this sum converges to

(π − x)/2 for x ∈ (0, π] and to (x+ π)/2 for x ∈ [−π, 0), but not at x = 0; what happens
there is that the series converges to the average of the right- and left-hand limits of f(x) at
0. Notice that the Fourier series of this odd function involves only sine functions; similarly
the Fourier series of an even function involves on cosine terms (counting the constant term
a0 cos 0x as a cosine term).

Using Fourier series one can evaluate certain sums that would be difficult or impos-
sible to realize as Taylor series. Perhaps the simplest and oldest example is the 2-series∑∞
n=1(1/n2), which converges to π2/6; this series is also a Taylor series, but of a function

given by an integral which is impossible to evaluate by a closed formula. Looking instead
at the Fourier series of |x|, we can deduce that

∑∞
n=1(1/n2) = π2/6. If we try to look at

the next case
∑∞
n=1(1/n3), we find that Fourier series come close to being able to evaluate

this sum, but can’t quite do it; the best one can do is show that the alternating sum∑∞
n=0(−1)n/(2n+ 1)3 of the odd reciprocals equal π3/32 (by looking at the Fourier series

of the function g(x) defined to be x2 for x ∈ [0, π] and −x2 for x ∈ [−π, 0]). It was shown
only in 1979 that the

∑∞
n=1(1/n3), called Apéry’s constant, is irrational; by now it is also

known that infinitely many other sums
∑∞
n=1 1/n2k+1 are also irrational.

Fourier series belong to a branch of mathematics called harmonic analysis; the idea in
physical terms it to take the graph of a periodic function f(x), regard it as the oscilloscope
reading of a sound wave, and then decompose that wave into its constituent frequencies.
This is where the harmonic series got its name.


