
Lecture 1-23

Starting from the series ln(1−x) =
∑∞
n=0−xn+1/(n+1) and the series obtained form

this by replacing x by −x, namely ln(1 + x) =
∑∞
n=0(−1)n+1xn+1/(n+ 1), both valid for

|x| < 1, we get the series for ln 1+x
1−x = 2

∑∞
n=0 x

2n+1/(2n+ 1), again valid for |x| < 1. This

is useful because any y > 0 can be written as 1+x
1−x for some x ∈ [0, 1), so that we now have

a series converging to ln y for any y ∈ R+.

Another very useful series results from generalizing the familiar binomial theorem. Let
α ∈ R and form the binomial series 1 +

∑∞
n=1(α(α− 1) . . . (α− n+ 1)/n!)xn; notice that

the coefficient of xn here is just
(
α
n

)
if α happens to be a nonnegative integer, but makes

sense for any α. The ratio test shows that this series has radius of convergence 1 (unless
α happens to be a nonnegative integer, in which case the series is a finite sum and always
converges). Using the formula (

∑∞
n=0 anx

n)(
∑∞
m=0 bmx

m) =
∑∞
n=0 cnx

n, for multiplying
two power series, where cn =

∑n
i=0 aibn−i, we find that the sum f(x) of the binomial

series satisfies (1 + x)f ′(x) = αf(x), f(0) = 1, whence we must have f(x) = (1 + x)α for
|x| < 1. This formula turns out also to hold at x = ±1, provided that α > 0. Starting

from the resulting formula 1 +
∑∞
n=1

1·3···(2n−1)
2nn! x2n for (1− x2)−1/2 and integrating term

by term, we get the series x+
∑∞
n=1

1·3···(2n−1)
2n(2n+1)n! x

2n+1 for arcsinx, which converges at both

endpoints x = ±1 as well. Curiously there is no convenient formula for the coefficients
in the Taylor series for tanx (in stark contrast to arctanx), except in terms of a family
of numbers called Bernoulli numbers, which were originally defined in a totally different
context.

To compute Taylor series of given functions f(x) at given points x = a we have
seen that we must evaluate the derivatives f (n)(a). Usually we do this by computing the
first few derivatives and looking for a pattern. For example, if g(x) = x2 lnx and a = 1
(Example 2 in the text, p. 614), we find that g(x) = x2 lnx, g′(x) = x + 2x lnx, g′′(x) =
3 + 2 lnx, g(n)(x) = (−1)n−12(n − 2)!x−(n−2), whence g(1) = 0, g′(1) = 1, g′′(1) = 3,
and g(k)(1) = (−1)k+12(k − 3)! for k ≥ 3. Hence the Taylor series for g(x) at x = 1

is (x − 1) + (3/2)(x − 1)2 + 2
∑∞
k=3

−1)k+12(k−3)!
k! (x − i)k. It has radius of convergence

1, converging at x = 2 but not at x = 0. It is often difficult or impossible to compute
the sequence of derivatives f(a), f ′(a), . . . explicitly; a useful technique for producing new
power series from old ones is changing the variable. For example, since ex =

∑∞
k=0 x

k/k!

for all x we have e−y
2

=
∑∞
k=0(−1)ky2k/k! for all y (replace x by −y2 in the first series;

this is much easier than computing the higher derivatives of e−y
2

at 0). Similarly, but
much more easily, we have e−x =

∑∞
n=0(−1)nxn/n! One can also multiply two power

series
∑
anx

n,
∑
bnx

n, using a formula given earlier; we have
∑∞
n=0 anx

n)(
∑∞
m=0 bmx

m) =∑∞
r=0 crx

r, where cr =
∑r
n=0 anbr−n. Note that while both series have infinitely many

terms, only finitely many of them contribute to the coefficient of any fixed power of x in
the product, so the product always makes sense.

Having seen that products of power series can always be defined, we can now see that
given any power (or Taylor) series

∑
anx

n whose constant term a0 is 0, we can define its
multiplicative inverse

∑
bnx

n, using the formula a0b0 = 1 to solve for b0, then the formula
a0b1 + a1b0 = 0 to solve for b1, and so on. For example, if you were to forget the formula



1/(1−x) =
∑∞
n=0 x

n, you could follow the above recipe to find a multiplicative inverse for
1− x, obtaining

∑∞
n=0 x

n. It is even possible to plug a power series with 0 constant term
into another power series, though you cannot expect to be able to write a formula for the
nth term of a such a composite. For example, the power series for sin(sinx) is (x−x3/3!+
x5/5!− . . . )−(1/3!)(x−x3/3!+x5/5!− . . . )3 . . . = x−(1/3)x3+ . . . ; there is no formula for
the coefficient of x2n+1 in this last series, but one can at least see that only finitely many
terms of the series contribute to it for fixed n, so that this coefficient is well defined. Also
only odd powers of x appear in the series, since sin(sinx) is an odd function. On the other
hand, it would not be feasible to write down a formula for sin(cosx) in quite the same way,
since in collecting terms in (1−x2/2! +x4/4!− . . . )− (1/3!)(1−x2/2! +x4/4!− . . . ) + . . . ,
we find that we must sum a power series even to compute the overall constant term. (We
know in principle at least though that this can be done, as the function f(x) = sin(cosx)
is certainly at least infinitely differentiable at every point; it is not difficult to show that
it is analytic everywhere too).

You will have noticed an obvious similarity in the coefficients of the Taylor series for
ex, sinx, and cosx at x = 0. This is not an accident. Recalling the set C = {a + bi :
a, b ∈ R} of complex numbers, in which we add and subtract two numbers a + bi, c + di
in the “obvious” way, obtaining respectively (a + c + (b + d)i, (a − c) + (b − d)i, and
multiply using the relation i2 = −1 and the distributive law, so that (a + bi)(c + di) =
(ac − bd) + (ad + bc)i, the power series

∑∞
n=0 z

n/n! converges for any z ∈ C. Bearing in
mind that the powers of i in C cycle among 1, i,−1,−i, we see that eix =

∑∞
n=0 x

2n/(2n)!+
i(
∑∞
n=0(−1)nx2n+1/(2n+1)! = cosx+ i sinx for any x ∈ R (and in fact for x ∈ C as well):

this expresses the fundamental relationship between the exponential and trigonometric
functions that I alluded to in the context of differential equations last quarter. A nice
exercise in multiplying power series is to verify that exey = ex+y; since this holds for any
x, y ∈ C, not just x, y ∈ R, we are led to the formula ea+bi = ea(cos b + i sin b), which
shows how to exponentiate any complex number.


