
Lecture 1-22

Continuing from last time, suppose that we have a Taylor series
∑
an(x − a)n such

that |an+1/an| → 1/R for some R > 0, so that the series converges for |x−a| < R. We have
already seen the sum f(x) of the series is continuous on (a − R, a + R). We now observe
that the ratio |(n+1)an+1/nan| of successive coefficients in the term-by-term differentiated
series

∑
nan−1(x− a)n−1 has the same limit as the corresponding ratio |an/an−1| for the

original series, whence the differentiated series has the same radius of convergence as the
original one. We saw at the end of last time that the integrals of the partial sums of the
differentiated series, normalized to take the value 0 at x = a, converge to the original series,
so it is the integral of the continuous function that is the sum of the differentiated series. In
particular, by the Fundamental Theorem of Calculus, f(x) is differentiable with derivative
f ′(x) equal to the sum

∑
nan−1(x− a)n−1 . Similarly, the term-by-term integrated series∑

an(x− a)n+1/(n+ 1) converges to the integral
∫ x

a
f(t) dt for x ∈ (a−R, a+R).

Thus starting from the geometric series
∑∞

n=0 x
n, which we know has sum 1/(1− x)

for |x| < 1 we get the series
∑∞

n=0 x
n+1/(n+ 1) for its integral − ln(1−x), or equivalently

the series −
∑∞

n=0 x
n+1/(n + 1) for ln(1 − x), valid for |x| < 1. To work out the sums

of the three series
∑∞

n=0 x
n/n!,

∑∞
n=0(−1)nx2n+1/(2n+ 1)!, and

∑∞
n=0(−1)nx2n/(2n)! we

need a slightly more roundabout argument. The sum f(x) of the first series satisfies
f(x) = f ′(x), since the series for f(x) is the same as that for f(x); we also have f(0) = 1.
We know from our work on differential equations that the only function f(x) with these
properties is ex, so we have ex =

∑∞
n=0 x

n/n! for all x ∈ R (in fact even for all x in
the complex numbers C). Similarly, the function g(x) =

∑∞
n=0(−1)nx2n+1/(2n + 1)! is

such that g′′(x) = −g(x), g(0) = 0, g′(0) = 1. Again from our earlier work on differential
equations, we know that the only function g(x) with these properties is sinx, so sinx =∑∞

n=0(−1)nx2n+1/(2n + 1)! for all x. Similarly, cosx =
∑∞

n=0(−1)nx2n/(2n)! for all x.
Also, starting from the geometric series 1/(1 + x2) =

∑∞
n=0(−1)nx2n, valid for |x| < 1, we

get the series for arctanx =
∑∞

n=0(−1)nx2n+1/(2n+ 1), also valid for |x| < 1.
You will have noticed that some of these series converge at one or both endpoints

of the interval of convergence. For example, the series
∑∞

n=0−xn+1/(n + 1) converges
at x = −1 by the alternating series test, but what is its sum there? The obvious guess
would be ln(1− (−1)) = ln 2, but is this correct? Indeed it is, by something called Abel’s
Theorem, which says that if a Taylor series

∑
(an(x − a)n converges at x = a + R, then

this series converges uniformly on the entire interval [a, a + R] (or [a + R, a] , if R < 0).
To prove this one shows by the argument used to prove Dirichlet’s test that the tail of this
series

∑∞
n=m an(x − a)n goes to 0 uniformly on [a, a + R], since this tail takes the form∑∞

n=mAnBn, where
∑
An has bounded partial sums and the Bn are decreasing. Hence

the sum
∑

n=0(−1)nxn/(n + 1) defines a continuous function on the interval [0, 1] whose
value at x = 1 must be the limit of its values ln(1 + x) as x → 1−. (Note also that
since − ln(1− x) blows up at x = 1, we would expect the corresponding series to diverge,
and it does; it is our old friend the harmonic series.) In a similar way, the convergent
alternating series

∑∞
n=0(−1)nx2n+1/(2n+ 1) and

∑∞
n=0(−1)n+1x2n+1/(2n+ 1) have sums

arctan 1 = π/4 and arctan(−1) = −π/4, respectively.
Now that we know that any convergent Taylor series

∑
an(x− a)n necessarily defines

a differentiable function on its interval of convergence, we can iterate the argument used to



prove this to deduce that in fact the sum of a convergent Taylor series defines an infinitely
differentiable function on its interval of convergence. We can also recover the coefficients
an of a Taylor series

∑
an(x − a)n whose sum f(x) is known; differentiating this series

term by term n times and plugging in x = a, we see that we must have an = f (n)(a)/n!,
the nth derivative of f at a (interpreting as usual the 0th derivative of a function as the
function itself). In particular, it is not possible for two distinct convergent Taylor series
to define the same function, though of course the Taylor series of a function f(x) at x = a
will look quite different from the Taylor series of the same function at another point x = b.
Thus it is possible for a power series and a Taylor series (at a point other than a = 0 to
converge to the same function.

If a function f(x) happens to equal the sum of its Taylor series
∑∞

n=0 f
(n)(a)/n! at

x = a, then we say that the function f(x) is analytic at x = a. Of course an analytic
function at a point must in particular be infinitely differentiable there; but unfortunately
many infinitely differentiable functions fail to be analytic. First of all, it turns out that the
sequence of derivatives f (0(a), f (1)(a), . . . of an infinitely differentiable function at a point
can be any sequence an of real numbers, so there is no guarantee that the Taylor series
of the infinitely differentiable function f(x) at x = a even converges anywhere except at
x = a. Secondly, and more subtly, it is possible for the Taylor series of one function at
a point to converge to a different function. Consider an old bugaboo from last quarter,
namely the function f(x) defined as e−1/x

2

for x 6= 0, while f(0) = 0. Last quarter, we

showed that the nth derivative f (n)(x) of f at x takes the form pn(1/x)e−1/x
2) at any point

x 6= 0, whence by L’Hopital’s Rule we have f (n)(0) = 0 for all n. Hence the Taylor series
of f(x) at x = 0 is the 0 series, even though f(x) 6= 0 for any x 6= 0. Taking the power
series for ex and replacing x throughout by −1/x2 we derive a power series in 1/x (or
equivalently a power series in negative powers of x) that converges to f(x) at any x 6= 0;
the very existence of such a series rules out the possibility of any (ordinary) power series
converging to x.


