
Lecture 1-21

We turn now to the main series of interest to us, namely power series. These take the
form

∑
anx

n (the summation can begin at any index, but in practice this index is usually
0 or 1). It turns out that by studying this series for arbitrary values of x, not just x = 1,
and determining not just when it converges but what it converges to, yields information
about the series

∑
an that could not have been obtained directly. (Similarly, in studying

the area under the graph of y = x2 between, say x = 1 and x = 2, it is more fruitful to
study the more general question of what this area is between any two limits for x than to
study just this one area directly.)

The first thing to observe is that the set of values for x for which
∑
anx

n converges
exhibits strong regularities. More precisely, suppose that this series converges at x = R
for some real number R. In particular, we must then have |anRn| → 0 as n → ∞. It
then follows for any x with |x| < |R| that the series

∑
|anxn| has terms less than or equal

to the corresponding terms of the convergent geometric series
∑

(|x|/R)n for sufficiently
large n, whence

∑
anx

n converges absolutely. In fact, we have something even better: if
we fix α > 0 with α < |R|, then the “tail”

∑∞
n=m |anxn| has terms dominated by those

of
∑∞

n=m(α/|R|)n for sufficiently large m, whence given ε > 0 there is an index N for
which any partial sum of

∑
anx

n lies with ε of the full sum
∑
anx

n, for all x ∈ [−α, α]
simultaneously. We express this situation by saying that

∑
anxn converges to its limit

absolutely and uniformly for all x ∈ [−α, α]. We will see some beneficial effects of this
uniform convergence soon.

For now we observe as a consequence that given any power series
∑
anx

n either it
converges for all x ∈ R (in which case we say that its radius of convergence is infinite),
or only for x = 0 (in which case we say its radius of convergence is 0), or else there is
a positive constant R such that the series converges absolutely for |x| < R but diverges
for |x| > R (in which case we say its radius of convergence is R). In this last case we
allow any behavior at the extreme values x = ±R: the series might converge conditionally
or diverge at either or both of these values and in any case the radius of convergence is
unaffected. The radius of convergence can be easily computed from the ratio test: if the
series

∑
anx

n has |an+1/an| → L as n → ∞, then its radius of convergence R is 1/L,
where for this purpose we take 1/0 =∞, 1∞ = 0. (More generally, if lim sup |an|1/n = L,
then once again R = 1/L, with the above conventions.)

Thus in particular the radius of convergence of
∑∞

n=0 x
n/n! is infinite; here we note

that by a standard convention for power series 00 = 0! = 1. Similarly, the radii of con-
vergence of both

∑∞
n=0(−1)nx2n+1/(2n + 1)! and

∑∞
n=0(−1)nx2n/(2n)! are both infinite

(taking ratios of successive nonzero terms rather than just successive terms in the latter
two series, as mentioned previously). An intermediate case is that of the geometric series∑∞

n=0 x
n and its term-by-term differentiated series

∑∞
n=1 nx

n−1; both of these series have
radius of convergence 1.

Very similar to power series are Taylor series
∑∞

n=0 an(x− a)n, where a is a constant.
Any such series converges either for all x, or x = a only, or else there is a positive number
R such that the series converges absolutely for |x − a| < R but diverges for |x − a| > R.
We again call R the radius of convergence.



Given a power or Taylor series
∑
anx

n or
∑
an(x − a)n with a positive radius of

convergence R, we now ask what sort of function f(x) such a series converges to for x in the
interval of convergence. To answer this question we consider the more general situation of a
sequence of functions f0(x), f1(x), . . . defined on some interval [a, b]. Such a sequence is said
to converge pointwise on [a, b] if the sequence f0(x), f1(x), . . . converges for all x ∈ [a, b]; it
converges uniformly on [a, b] to a function f(x) if for every ε > 0 there is an index N such
that |fn(x)−f(x)| < ε for any n > N and any x ∈ [a, b] (the same N has to work for all x).
Now it turns out that the pointwise limit of continuous functions need not be continuous
(consider the sequence of functions fn(x) = xn on the unit interval [0, 1], whose limit is
the function f(x) equal to 0 for x ∈ [0, 1) but equal to 1 for x = 1), but the uniform limit
of a sequence of continuous functions must be continuous. To prove this, let the sequence
fn converge uniformly to f on [a, b]. For x ∈ [a, b] and ε > 0, first choose an index N such
that |f(x) − fn(x)| < ε/3 for n ≥ N ; then choose δ > 0 such that |fN (x) − fN (y)| < ε/3
whenever x, y ∈ [a, b] and |x − y| < δ. Then, under the same hypothesis on x and y, we
have |f(x) − f(y)| ≤ |f(x) − fN (x)| + |fN (x) − fN (y)| + |fN (y) − f(y)| < ε, as desired.
In particular, given say a Taylor series

∑
an(x − a)n with radius of convergence R > 0,

we have seen that its sum f(x) is the uniform limit of continuous polynomial functions∑m
n=1 an(x−a)n on any interval [−α, α] strictly contained in (−R,R), and so is continuous

on (−R,R).
Returning to the setting of a sequence of continuous functions fn converging uniformly

on an interval [a, b] to a function f(x), a further general fact is that the integrals
∫ b

a
fn(x) dx

of the fn converge to the integral
∫ b

a
f(x) dx of f(x); to see this, just note that, given

ε > 0 there is an index N such that |f(x) − fn(x)| < ε/(b − a) for n ≥ N , whence∫ b

a
|f(x) − fn(x)| dx < ε, as desired. We will use this result to show next time that a

convergent power or Taylor series defines a differentiable function within the interval of
convergence.


