
Lecture 1-17

We begin with a remarkable application of Dirichlet’s test for conditionally convergent
series. Fixing x 6= 2kπ for any integer k and defining the sequence (an) via an = sinnx,
we recall from trigonometry that sinA sinB = (1/2)(cos(A − B) − cos(A + B)). Mul-
tiplying

∑n
i=1 ai by sin(x/2), we find that the sum telescopes and we get

∑
i = 1nai =

cos(x/2)−cos(2n+1)(x/2)
sin((1/2)x) , whence the partial sums of

∑
an are bounded (by 2/| sin(x/2))) and∑

i = 1∞ sin(ix)(1/i) converges for all x (including multiples of 2π, as it converges to 0 in
that case). There is actually a very nice formula for the sum of this series; it turns out to
be (π−x)/2 for 0 < x < π, 0 for x = 0 and (−π−x)/2 for −π < x < 0. (Thus a convergent
sum of infinitely many continuous functions, unlike the sum of finitely many continuous
functions, need not be continuous.) More generally, the series

∑∞
i=1 ai sin(ix) converges

for any x if the ai are nonnegative and decrease to 0 as i goes to infinity. We thus obtain
a large family of convergent series, called Fourier series (because of the appearance of the
sin ix terms; general Fourier series would include cos(ix) terms as well). Such series are of
fundamental importance in physics and have a rich mathematical theory as well. As with
the integral

∫∞
0

sinx/x dx, it is not difficult to show that the convergence of
∑∞

i=1 sin(ix)/i
is conditional for any x with sinx 6= 0.

So far all of our tests for convergence of series have involved either comparisons with
other series or specialized hypotheses on the series. It is convenient to have a convergence
test that can be easily applied to general series without the need to compare them to
other series. This is furnished by the ratio test: given a series

∑
an for which the ratio

|an+1/an| → L for some L as n→∞, the series converges absolutely if L < 1 and diverges
if L > 1. More generally, if lim sup |an+1/an| < 1, then

∑
an converges absolutely, while

if lim inf |an+1/an| > 1, then
∑
an diverges. Indeed, if L = lim sup |an+1/an| < 1, then

there is α ∈ (L, 1) such that |an+1| ≤ α|an| for n sufficiently large, whence there is some M
with |an| ≤ αn−M |aM | for n ≥M and

∑
|an| converges by comparison with a convergent

geometric series. If instead L′ = lim inf |an+1/an| > 1 then there is α ∈ (1, L) with |an+1| ≥
α|an| for sufficiently large n, whence an does not even go to 0 as n → ∞, showing that∑
an and

∑
|an| both diverge. Unfortunately, if lim inf |an+!/an| ≤ 1 ≤ lim sup |an+1/an|,

then nothing can be said: the p-series for p = 1 (i.e. the harmonic series) diverges while
the p-series for p = 2 converges and both have an+1/an → 1 as n → ∞. This last case
amounts to a hole in the ratio test; unfortunately this turns out to be a rather huge hole,
so much so that a whole battery of tests was devised in the 19th century precisely to deal
with the case |an+1/an| → 1 in the ratio test.

As an example, the series
∑∞

n=1 n!/nn has the ratio ((n + 1)!/n!)(nn/(n + 1)n+1 =
(n/(n + 1))n, which approaches 1/e as n goes to infinity, whence this series converges.
More generally, for fixed x, the series

∑∞
n=1(n!/nn)xn converges if x < e but diverges if

x > e. The series
∑∞

n=0 x
n/n! has a better convergence behavior, converging absolutely

for all x. The series
∑∞

n=0 nx
n−1 converges absolutely for |x| < 1.

The root test is very similar to the ratio test. A series
∑
an converges absolutely if

lim sup |an|1/n < 1 and diverges if lim inf |an|1/n > 1. The proof is essentially the same as
that of the ratio test. Once again the case lim inf |an|1/n ≤ 1 ≤ lim sup |an|1/n is the one
for which the test fails: there are both convergent and divergent series with this behavior.



One should exercise some care in applying either the ratio or the root test. For exam-
ple, given the series

∑∞
n=0(−1)nx2n/(2n)! for x ∈ R, one could rewrite it as

∑∞
n=0 anx

n,
where an = 0 if n is odd and an = (−1)m/(2m)! if n = 2m is even. Indeed, one would have
to rewrite the series in this way if one insists that all nonnegative powers of x appear in it
(as is done with power series, to be discussed later). In this last form neither the ratio nor
the root test applies to this series, since every other ratio of consecutive terms is undefined
and every other root of a term is 0. But, of course, if we return to the series in its original
form, the ratio of the absolute values of two successive terms is x2/((2n+1)(2n+2), which
for any x ∈ R goes to 0 as n goes to infinity; thus the series converges absolutely for all x.

Since Julie showed yesterday that a conditionally convergent series can be rearranged
to converge to any real number, we should take a moment to show that this kind of nonsense
cannot occur for absolutely convergent series: if

∑∞
n=1 an converges absolutely to L, then

any rearrangement of this series also converges to L. Indeed, given ε > 0, there is some
N such that the sum

∑∞
i=N+1 |ai| of the absolute values of the terms in this series is less

than ε. Given any rearrangment
∑
bn of

∑
an, there is an index M such that the terms

a1, . . . , aN all appear among b1, . . . , bM . The sum of the other ai appearing among the
b1, . . . , bM and of the bi for i > M is bounded in absolute value by

∑∞
i=N+1 |ai| < ε, so the

bi also sum to L, as desired. In a similar way one can show that if
∑∞

n=0 an and
∑∞

n=0 bn
both converge absolutely, say to L and M , respectively, then the product series

∑N
n=0 cn

converges absolutely to LM , where cn =
∑n

i=0 aibn−i.


