
Lecture 1-15

Returning to and generalizing an example from an earlier lecture, we consider again
series

∑∞
n=1 an of nonnegative terms that are decreasing. The trick that we used to show

that
∑

1/n diverges while
∑

1/n2 converges can be generalized to the Cauchy condensation
test, which says that a series

∑∞
n=1 an of decreasing nonnegative terms converges if and

only if the series
∑∞

n=1 2na2n converges. Indeed, the 2n − 1th partial sum of this series is

bounded above by
∑n−1

i=0 2ia2i but below by
∑n−1

i=0 2ia2i+1 , so the partial sums of the first
series are bounded if and only if the partial sums of the second one are. This is a kind of
discrete version of the integral test.

What about series
∑
an whose terms are not nonnegative, or integrals

∫∞
a
f(x) dx

for which the integrand f(x) is not always nonnegative? The first thing to be said is
the convergence of another series or integral with nonnegative terms always implies the
convergence of the given one. More precisely, any series

∑
an for which

∑
|an| converges

also converges; we say that such a series converges absolutely. Similarly, any integral∫∞
a
f(x) dx for which

∫∞
a
|f(x)| dx converges also converges; we say the first integral con-

verges absolutely. To verify these assertions, it suffices to note in the series case that the
series

∑
bn = −

∑
(an + |an| and

∑
cn =

∑
|an| both have nonnegative terms and con-

verge, the former by comparison with the series 2
∑
|an|. Hence

∑
an itself, which is the

difference of these two series, also converges. Similarly, if
∫∞
a
|f(x)| dx converges, then so

does
∫∞
a

(f(x)+ |f(x)|) dx, whence so does
∫∞
a
f(x) dx. In particular, the series

∑
sinn/n2

and the integral
∫∞
1

(sinx/x2) dx both converge absolutely, by comparing to
∑

1/n2 and∫∞
1

(1/x2) dx, and so converge. There are however examples of series
∑
an and integrals∫∞

a
f(x) dx that converge even though

∑
|an| and

∫∞
a
|f(x)| dx diverge; we say that such

sums or integrals converge conditionally. The convergence depends on delicate cancellation
between positive and negative terms (or values of the integrand) and so typically is very
slow.

As an example, consider the alternating harmonic series
∑∞

n=1(−1)n−1/n. Here we
observe that the odd partial sums s1, s3, . . . form a decreasing sequence while the even
partial sums s2, s4, . . . form an increasing sequence. Moreover it is easy to check that
every odd partial sum s2n−1 is greater than or equal to every even one s2m. Hence the
sequences s1, s3, . . . and s2, s4, . . . both converge, and moreover their limits are the same
since a2n+1 = s2n+1 − s2n → 0 as n → ∞. Hence

∑∞
n=1(−1)n−1/n converges. More gen-

erally, any alternating series
∑

(−1)n−1an for which the an are decreasing, nonnegative,
and approach 0 as n → ∞ converges, regardless of how fast or slowly the an approach
0; this is the alternating series test. Similarly, given the integral

∫∞
1

sinx/x dx, we can

use integration by parts to rewrite it as (− cosx/x2)|∞1 +
∫∞
1

cosx/x2 dx. The first dif-
ference has a finite limit and the second integral converges absolutely by comparison with∫∞
1

1/x2 dx, so
∫∞
1

sinx/x dx converges. But the integral
∫∞
1
|(sinx/x)| dx diverges, since

for any positive integer k the integrand | sinx/x| is bounded below by 1/2x on the interval
[kπ/2− π/6, kπ/2 + π/6], whence the partial integrals of this integral are bounded below
by 2π/6 times 2/π times the partial sums of the harmonic series and so do not have a
limit. Here the general fact is that given any continuous function f(x) whose integrals∫ b

a
f(x) dx are bounded as a function of b (they need not have a limit as b → ∞) and



another differentiable nonnegative function g(x) decreasing to 0 as x → ∞, the integral∫∞
a
f(x)g(x) dx converges, typically conditionally. Here there is no simple formula for the

value of
∫∞
1

sinx/x dx but there is one for
∫∞
0

sinx/x dx = π/2 (defining the integrand to
have the value 1 at x = 0, since its limit is 1 as x→ 0). Remarkably enough, the integral∫∞
0

(sin2 x/x2) dx is also equal to π/2. There is no cancellation in the latter integral, but
the integrand has smaller absolute value than the first integrand; it turns out that these
two effects exactly cancel each other out.

There is a summation analogue of this criterion for an improper integral to con-
verge conditionally. To state it, we start with an analogue of integration by parts, called
summation by parts. Given real numbers a1, . . . , an, b1, . . . , bn, set sk =

∑k
i=1 ai for

1 ≤ k ≤ n, s0 = 0. Then
∑n

i=1 aibi =
∑n

i=1(si− si−1)bi = snbn +
∑n−1

i=1 si(bi− bi+1). Sim-

ilarly, fixing an index m ≤ n and setting tk =
∑k

i+m ai, tm−1 = 0, we have
∑n

i=m aibi =∑n
i=m(ti − ti−1)bi = tnbn +

∑n−1
i=m ti(bi − bi+1). Now let an and bn be sequences of real

numbers such that the partial sums of the an are bounded (in absolute value), say by M
(as before, they need not converge) while the bn are decreasing and nonnegative with
bn → 0; once again, it does not matter how fast the bn approach 0. Then Dirich-
let’s test states that the series

∑∞
i=1 aibi converges. To prove this, we show that the

partial sums attached to this series form a Cauchy sequence. Fixing indices m,n with
m ≤ n, we find that the difference dm−1,n between the (m − 1)th and nth partial sums

is
∑n

i=m aibi = tnbn +
∑n−1

i=m ti(bi − bi+1). Now the ti are differences of two partial sums
of the ai and as such are bounded in absolute value by 2M , while the bi − bi+1 with
m ≤ i ≤ n − 1 form a so-called telescoping series, with sum bm − bn. The upshot is that
dm−1,n is bounded by 2M(bm + bn), which gets arbitrarily small for m,n sufficiently large.
Hence the partial sums of

∑
aibi indeed form a Cauchy sequence and

∑
aibi converges,

as claimed. In particular, we can vastly generalize the alternating series test: given any
pattern of 2k signs + or − having the same number of + and − signs, repeat it periodically
to form a sequence of numbers an, each either 1 or −1. Then given any sequence bn of
nonnegative numbers decreasing to 0 as n goes to infinity, the series

∑
anbn converges.


