
Lecture 1-14

Continuing from last time, we now give a criterion for a general sequence sn to con-
verge. The intuition behind this is quite simple; if the sequence converges, so that the si
are getting close to the limit L as i increases, then the si must also be getting close to each
other as i increases. Accordingly, we say that the sequence si is Cauchy if for every ε > 0
there is N such that for any indices n,m ≥ N we have |sn − sm| < ε. Then a sequence
is Cauchy if and only if it converges. To prove this, assume first that the sequence si
converges, say to L. Then given ε > 0 there is N such that whenever n ≥ N we have
|sn − L| < ε/2, whence whenever n,m ≥ N we have |sn − sm| ≤ |sn − L|+ |L− sm| < ε,
as desired. Conversely, suppose that si is Cauchy. In particular, there an index M such
that for any n,m ≥ M we have |sn − sm| < 1, whence |sn| ≤ |sM | + 1 for n ≥ M . It
follows that si is bounded (by max(|s1|, . . . , |sM | + 1), whence si has a finite limit supe-
rior, say L. We claim that si converges to L. To prove this, let ε > 0 and choose N1

such that |sn − sm| < ε/2 whenever n,m ≥ N1. Defining ti = sup(si, si+1, . . . ) as we
did last time, there is an index M with |ti − L| < ε/4 for i ≥ M , and then an index
N2 with |sN2 − tN2 | < ε/4 and |sN2 − L| < ε/2. Finally, for i ≥ N = max(N1, N2) we
have si − L| ≤ |si − sN2

| + |sN2
− L| < ε, as desired. We can also say that a sequence si

converges if and only if its limits superior and inferior coincide; in general the difference
between these two limits provides a precise measure of the extent to which the sequence
fails to converge.

In the first week of class last quarter we constructed the real numbers as Dedekind
cuts, that is, as certain sets of rational numbers. An alternative approach is to construct
the real numbers as equivalence classes of Cauchy sequences of rational numbers. In more
detail, we define a Cauchy sequence of rational numbers as above, restricting to rational
numbers ε (since we have not yet constructed the real numbers). We say that two Cauchy
sequences an and bn are equivalent if the interleaved sequence a1, b1, a2, b2, . . . is Cauchy.
Then, as indicated above, the real numbers may be identified with equivalence classes of
Cauchy sequences. In this approach the fundamental completeness property of the real
numbers is not that any set of them that is bounded above has a least upper bound, but
rather that any Cauchy sequence of them converges. To define what is meant by a Cauchy
sequence of Cauchy sequences, we need to say when two Cauchy sequences an and bn are
less than r apart for some rational number r; this holds if and only if |an − bn| < r for
sufficiently large n. Then to find the limit of a Cauchy sequence of (equivalence classes of)
Cauchy sequences, one starts with the N1th term of the first sequence, where the index
N1 is chosen so that any two terms of this sequence past the N1th term are less than 1
apart. The next term is then the N2th term of the second sequence, N2 chosen so that
any two terms of this sequence past the N2th are less than 1/2 apart, and so on. One
disadvantage of this approach (which you can probably see already) is that equivalence
classes of sequences are more awkward to deal with, both notationally and conceptually,
than sets of rational numbers; but one advantage is that the definitions of the arithmetic
operations on Cauchy sequences are very straightforward and require no splitting into
cases.

We now formally introduce improper integrals, which we have already seen last term.
Given a function f(x) defined on [a,∞) (and assumed bounded and continuous there for



simplicity) we define its improper integral
∫∞
a
f(x) dx to be limb→∞

∫ b

a
f(x) dx, if the limit

exists; if it does not, we say that this integral diverges. If in addition the integrand f(x) is
nonnegative, then there are only two possible behaviors: either the set of “partial integrals”∫ b

a
f(x) dx for all b ≥ a is bounded or it is not. If it is not, then we now allow ourselves to

write
∫∞
a
f(x) dx =∞; if it is, then the least upper bound of the integrals

∫ b

a
f(x) dx is the

value of
∫∞
a
f(x) dx. As with infinite series with nonnegative terms, we have a comparison

test: if f(x), g(x) are nonnegative functions with f(x) ≤ g(x) for all sufficiently large x,
and if

∫∞
a
g(x) dx converges, then so does

∫∞
a
f(x) dx, while if

∫∞
a
f(x) dx diverges, then so

does
∫∞
a
g(x) dx. For example, we checked directly last quarter that

∫∞
1
xr dx converges

if and only if r < −1; it follows that
∫∞
1

sin2 x/xr dx converges for r > 1. We showed

that
∫ 1

0
xr dx converges exactly for r > −1. It follows that

∫ 1

0
xr cos2 x converges exactly

for r > −1 as well, since we have 1/2 < cos2 x ≤ 1 for x sufficiently small. The limit
comparison test that we saw earlier for series carries over to integrals; if f(x), g(x) are
nonnegative functions such that f(x)/g(x)→ L as x→∞, where L is finite and nonzero,
then

∫∞
a
f(x) dx converges if and only if

∫∞
a
g(x) dx does.

Returning now to infinite series, their theory and that of improper integrals come
together in a beautiful way in the integral test: given a sequence an such that there is a
decreasing continuous function f(x) with f(n) = an, the series

∑∞
n=1 an converges if and

only if the integral
∫∞
1
f(x) dx does. This follows since a typical partial sum

∑n
i=1 ai of∑∞

i=1 ai is bounded above by
∫ n+1

1
f(x) dx, but below by

∫ n

1
f(x) dx, this sum being a

lower sum for the first integral and including an upper sum for the second integral. Hence
the partial integrals have a limit if and only if the series converges. In particular, as we
saw before,

∑∞
i=1 1/ip converges if and only if p > 1; similarly

∑∞
i=2(1/i ln i) diverges. In

general, if (an) is any sequence satisfying the above conditions and we look at the difference
tn =

∑n
i=1 ai −

∫ n

1
f(x) dx we find that the tn form a decreasing sequence of nonnegative

numbers, which we know always has a limit. In the special case f(x) = 1/x, an = 1/n this
limit is called the Euler-Mascheroni constant and is usually denoted γ. Appallingly little
is known about it; for example, we still do not know whether it is rational or irrational.


