
Lecture 1-13

We turn now to sequences and series. We have already given the basic definitions
and so will only briefly recall these before proceeding to the main results and examples.
We already know what it means for a sequence sn of real numbers to have the limit L;
from now on the main sequences sn we will consider are the sequences of partial sums
sn =

∑n
i=1 ai of infinite series

∑∞
i=1 ai of real numbers ai. We say that

∑∞
i=1 ai converges

to L (or has sum L) if the corresponding sequence sn converges to L. We say that
∑∞

i=1 ai
diverges if it does not converge. Last term we did not allow functions or sequences to
have infinite limits, but here we relax this rule, allowing ourselves occasionally to write∑∞

i=1 ai =∞ if for every x ∈ R there is an index N such that
∑n

i=1 ai > x if n ≥ N . We
also allow infinite series to start at any index i, not just i = 1.

In most cases the sequence sn of partial sums of an infinite series
∑∞

i=1 is much too
complicated to study directly. One of the rare exceptions occurs for a geometric series∑∞

i=0 ar
i, where a, r are real numbers. Leaving aside the trivial case a = 0, you will derive

in HW an explicit formula for sn =
∑n

i=0 ar
i and use this formula to show that the series

converges if and only if |r| < 1; you will also work out its sum in that case. In general, it
will take a while before we are able to work out the sum of any nongeometric convergent
series, but in the meantime there are some fairly powerful tools to decide whether a given
series converges or diverges. We begin with a very simple observation: if

∑
an converges,

then limn→∞ an = limn→∞(sn − sn−1 = 0, since both sn and sn−1 have the same limit as
n→∞. Thus any series

∑
an for which an 6→ 0 as n→∞ diverges.

We start by considering series
∑

ai with all ai ≥ 0. In this case the sequence sn of
partial sums is increasing, so we know by the first week of last term that

∑
ai converges

if and only if the sn are bounded. There is an easy sufficient condition for this, called
the comparison test: if we have ai ≤ bi for all but finitely many indices i and if

∑
bi

converges, then so does
∑

ai. If on the other hand we have ai ≥ bi for all but finitely
many i and if

∑
bi diverges, then so does

∑
ai. Applying this test to the famous harmonic

series
∑∞

i=1(1/i), it turns out to be more convenient to study the partial sums sn with
n = 2m − 1 one less than a power of 2 than in general. Setting j = 2m − 1, we find that

the partial sum sj can be written as the sum of m subsums
∑2k

i=2k−1(1/i) (for 1 ≤ k ≤ m)

and the kth subsum is greater than or equal to
∑2k

i=2k−1(1/2k) = 1/2, whence even the
set of partial sums s2m−1 is not bounded and the harmonic series diverges. On the other
hand, if p is a positive real number, then the p-series

∑∞
i=1(1/ip) is such that its (2m−1)th

partial sum s2m−1 is less than or equal to
∑m

k=1

∑2k

i=2k−1(1/2k−1)p =
∑m

k=1 2k−1/2p(k−1),
a partial sum of a convergent geometric series whenever p > 1. Hence the partial sums
s2m−1 of the p-series are uniformly bounded, whence the set of all partial sums sn of this
series is bounded (since any sn < s2m−1 for sufficiently large m) and the p-series converges
exactly for p > 1. This is our second family of series where we can pinpoint the dividing
line between convergence and divergence precisely, the first one being the geometric series,
and as with that series the transition from convergence to divergence takes place at the
value 1. Note that the convergence of the p-series for p > 1 is usually established by the
so-called integral test, but the above argument shows that the latter test is not necessary
for this purpose.



With two families of series under our belt whose convergence behavior is known, we
are in a position to test many other series for convergence using the comparison test. For

example, the series
∑

n=1
n2

n5+1 converges by comparison with the 3-series
∑∞

n=1(1/n3),

since n2

n5+1 < 1
n3 for all n ≥ 1; similarly

∑
n=1

√
n+4
2n diverges by comparison with the 1/2-

series. What about the series
∑∞

n=1
n

n2+1? We cannot compare directly with the harmonic
series, since the inequalities go the wrong way; that is, we have n

n2+1 < n
n2 rather than

n
n2+1 > n

n2 . If we compute the limit of the ratio n/(n2+1)
(1/n) as n→∞, however, we find that

this limit is 1, whence we have (say) n
n2+1 > 1

2n for sufficiently large n and
∑∞

n=1
n

n2+1
diverges by comparison with the harmonic series times 1/2. The general principle at work
here is called the limit comparison test: given two series

∑
an,

∑
bn with nonnegative

terms such that the ratio an/bn approaches a finite nonzero limit L as n→∞, these series
converge or diverge together (that is, one converges if and only if the other does). This
follows since for sufficiently large n we have both an < 2Lbn and an > (1/2)Lbn. (Note
also that if the ratio an/bn has limit ∞ and

∑
bn diverges, then so does

∑
an; if the ratio

an/bn has the limit 0 and
∑

bn converges, then so does
∑

an.) The limit comparison test
vastly extends the scope of the (ordinary) comparison test, since it is often hard to check
that an < bn for all but finitely many n, but easy to evaluate lim an/bn.

Before going on with series, we return to sequences, deriving a general necessary and
sufficient condition for a sequence to converge. We already know that an increasing or
decreasing sequence converges if and only if it is bounded (above and below), but what
about general sequences? To study these we introduce two kinds of limits that are defined
for all sequences, convergent or not. Given a sequence sn that is not bounded above (as a
set), we say (by definition) that its limit superior is infinite and we write lim sup sn =∞.
Otherwise the set Si = {si, si+1, . . . } is bounded above for all i and so has a least upper
bound ti; moreover we have ti ≥ ti+1 since Si ⊂ Si+1. If the sequence ti is not bounded
below, we write lim sup si = −∞; otherwise, this sequence has a limit (equal to its greatest
lower bound), which we denote by lim sup si. We define lim inf si in a similar manner,
working with the greatest lower bounds of the Si if they exist and writing lim inf si = −∞
if they do not. Next time we will give a criterion for si to converge and use the limit
superior to identify the limit of si whenever this sequence satisfies the criterion.


