
Lecture 1-10

We wrap up Chapter 10 with a brief discussion of surface areas of solids of revolution
and centroids of parametrized curves. We begin with surface areas. We start with the
graph of a parametrized curve (x(t), y(t)) lying in the upper half plane and defined on an
interval [a, b]. We assume that the function x(t) is strictly increasing on [a, b]; note that this
assumption is not made explicit in the discussion on the text on p. 518, though it should
have been. Now we rotate the region between this graph and the interval [a, b] on the x-axis

about this axis, obtaining a solid of revolution. The volume of this solid is π
∫ b
a
y(t)2x′(t) dt,

by a straightforward extension of the formula for this volume in the special case of a graph
of a function (this formula does not appear in the text). The surface area of this solid

can be written as the limit of Riemann sums for the integral
∫ b
a

2πy(t)
√
x′(t)2 + y′(t)2 dt;

this formula ultimately arises from the well-known formula πRs for the lateral surface area
of a cone with base radius R and slant height s. In particular, if the graph of a positive
function y = f(x) on an interval [a, b] is rotated about the x-axis, the surface area of the

resulting solid of revolution is given by 2π
∫ b
a
f(x)

√
1 + f ′(x)2 dx. Thus for example a

sphere of radius R is obtained by rotating the parametrized curve (x, y) = (R cos t, R sin t)
about the x-axis for 0 ≤ t ≤ π, whence its surface area is 2πR2

∫ π
0

sin t dt = 4πR2, as
expected. Note that, unlike the corresponding volume computation, it makes no difference
in the surface area computation that the graph is traced here in the “wrong” direction
(from right to left instead of left to right), though of course we still have to make sure that
every point on the circle is traced exactly once over the given interval.

An amusing example arises if the graph of y = x−2/3 for x ≥ 1 is rotated about the
x-axis. The resulting solid has finite volume π

∫∞
1
x−4/3 dx = −3x−1/3|∞1 = 3, but its

surface area is infinite. Here we cannot actually evaluate the surface area integral, but we
can observe that the integrand 2πx−2/3

√
1 + (4/9)x−10/3 is bounded below by 2πx−2/3,

whose integral from 1 to ∞ diverges. Thus “you can fill up this solid (called Gabriel’s
horn) with paint but you can’t paint its sides”.

Returning now to two dimensions, we consider centroids of parametrized curves. These
are by definition certain weighted averages of coordinates of points on the curves; note
that for closed curves they are not the same as centroids of regions enclosed by such
curves. More precisely, one starts with the integrand ds =

√
x′(t)2 + y′(t)2 dt for com-

puting the arclength of a parametrized curve and then introduces multiplicative weights
x(t), y(t) to this integrand to compute the coordinates (x̄, ȳ) of this centroid, so that

x̄ = (1/L)
∫ b
a
x(t) ds, ȳ = (1/L)

∫ b
a
y(t)ds, where the curve is parametrized over the inte-

gral [a, b] and has arclength L. Here we do not need to make any assumptions about the
signs or monotonicity of x(t) or y(t). For example, the x-coordinate x̄ of the centroid of
the quarter-circle {(R cos t, R sin t) : 0 ≤ t ≤ π/2} equals (2/πR)

∫
R2 cos t dt = 2R/π; by

symmetry the y-coordinate ȳ of this centroid is also 2R/π. By contrast, the centroid of the
disk enclosed by this quarter-circle and the positive x- and y-axes is (4R/3π, 4R/3π); it is
closer to the center of the circle than the previous centroid since it is a weighted average
of points most of which are closer to the center than any point on the circle. In general,
the centroid of a closed curve lies inside the region it encloses, but closer to its boundary
than the centroid of this region.



There is a beautiful relationship between surface areas of solids of revolution and
centroids of curves generating them. This is given by Pappus’s Theorem, which asserts
that if a plane curve is rotated about an axis in its plane such that the axis does not meet
the curve and perpendicular lines to the axis meet the curve in at most one point, then the
surface area of the solid of revolution equals the distance from the centroid of the curve to
the axis of rotation times the arclength of the curve. This follows at once from the above
formulas.

While we have defined the arclength of a parametrized curve segment to be the limit
of the sums of lengths of line segments joining successive points on that curve segment
as the number of such points approaches infinity and the distance between two successive
points approaches 0, it turns out that we cannot define areas of surfaces as limits of the
sums of areas of inscribed triangles. The problem is that triangles inscribed in a surface
may be more nearly perpendicular than parallel to the surface, so that the sum of their
areas can be arbitrarily large. A number of definitions of area for more general kinds of
surfaces have been proposed that disagree with each other; fortunately all agree with the
formula we have given above for solids of revolution.


