Primes and spirals
In class we looked at how the the polynomial
n2 + n + 41
is prime whenever we plugged in values for n.
In what seemed unrelated at the beginning, we also made spirals of numbers, where we would start with one number in the center of the grid, and then "spiral out" counting up by one.
17 |
18 |
19 |
20 |
21 |
16 |
5 |
6 |
7 |
22 |
15 |
4 |
1 |
8 |
23 |
14 |
3 |
2 |
9 |
24 |
13 |
12 |
11 |
10 |
25 |
They relate to each other when we color all the prime numbers yellow and notice to the yellow line
across the diagonal of the graph below (starting at 41).
Looking at a bigger table we can see that this streak
does in fact stop eventually.
The important thing to note here is that just because something is true for small values, doesn't mean it'll be true for everything.
Problem 1
Find a whole number n so that when you plug it into the above equation, the resulting number is not prime.
(Hint, you want to try something big, but not so big it's hard to tell whether or not its prime.)
Problem 2
Notice that there are several other streaks (e.g. 53 to 293 in the lower left). Can you find a polynomial that gives one of those lines when you plug in consecutive values of n?
The tables were created with SAGE. You can try making your own online here (to run, press shift-enter in the box).
365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 |
364 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 384 |
363 | 296 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 314 | 385 |
362 | 295 | 236 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 252 | 315 | 386 |
361 | 294 | 235 | 184 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 198 | 253 | 316 | 387 |
360 | 293 | 234 | 183 | 140 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 152 | 199 | 254 | 317 | 388 |
359 | 292 | 233 | 182 | 139 | 104 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 114 | 153 | 200 | 255 | 318 | 389 |
358 | 291 | 232 | 181 | 138 | 103 | 76 | 57 | 58 | 59 | 60 | 61 | 84 | 115 | 154 | 201 | 256 | 319 | 390 |
357 | 290 | 231 | 180 | 137 | 102 | 75 | 56 | 45 | 46 | 47 | 62 | 85 | 116 | 155 | 202 | 257 | 320 | 391 |
356 | 289 | 230 | 179 | 136 | 101 | 74 | 55 | 44 | 41 | 48 | 63 | 86 | 117 | 156 | 203 | 258 | 321 | 392 |
355 | 288 | 229 | 178 | 135 | 100 | 73 | 54 | 43 | 42 | 49 | 64 | 87 | 118 | 157 | 204 | 259 | 322 | 393 |
354 | 287 | 228 | 177 | 134 | 99 | 72 | 53 | 52 | 51 | 50 | 65 | 88 | 119 | 158 | 205 | 260 | 323 | 394 |
353 | 286 | 227 | 176 | 133 | 98 | 71 | 70 | 69 | 68 | 67 | 66 | 89 | 120 | 159 | 206 | 261 | 324 | 395 |
352 | 285 | 226 | 175 | 132 | 97 | 96 | 95 | 94 | 93 | 92 | 91 | 90 | 121 | 160 | 207 | 262 | 325 | 396 |
351 | 284 | 225 | 174 | 131 | 130 | 129 | 128 | 127 | 126 | 125 | 124 | 123 | 122 | 161 | 208 | 263 | 326 | 397 |
350 | 283 | 224 | 173 | 172 | 171 | 170 | 169 | 168 | 167 | 166 | 165 | 164 | 163 | 162 | 209 | 264 | 327 | 398 |
349 | 282 | 223 | 222 | 221 | 220 | 219 | 218 | 217 | 216 | 215 | 214 | 213 | 212 | 211 | 210 | 265 | 328 | 399 |
348 | 281 | 280 | 279 | 278 | 277 | 276 | 275 | 274 | 273 | 272 | 271 | 270 | 269 | 268 | 267 | 266 | 329 | 400 |
347 | 346 | 345 | 344 | 343 | 342 | 341 | 340 | 339 | 338 | 337 | 336 | 335 | 334 | 333 | 332 | 331 | 330 | 401 |