Rotations, reflections, and rearrangements

UW Math Hour

Kristin DeVleming

University of Washington → University of California, San Diego

April 26, 2020
Definition
Imagine that you have cut the triangle out of this piece of paper. A **symmetry** is an operation you can perform on the triangle so that it fits exactly back into the hole it was cut from.
Triangles

How many symmetries does the equilateral triangle have? (Hint: use your triangle and perform rigid motions of it.) Come up with a description of the symmetries.

Prove that you have found all symmetries of the triangle.
What are the symmetries of the triangle?

Rotational symmetries:
- do nothing = rotate 3 times
- rotate clockwise
- rotate clockwise 2 times [rotate counterclockwise]

Reflection symmetries:
- $\triangle ABC \rightarrow \triangle ACB$ "F_1"
- $\triangle ABC \rightarrow \triangle ACB$ "F_2"
- $\triangle ABC \rightarrow \triangle ACB$ "F_3"

Q. What if we do \(F_1 \), then \(F_2 \)?

\[F_1F_2 = R_c \]
How can we prove that we have found all of the symmetries?

\[3! = 6 \]

\[3! = 3 \times 2 \times 1 = \text{# of ways to rearrange 3 things} \]

Any symmetry of the triangle is determined by the arrangement of the vertices:

\[\triangle ABC \rightarrow \triangle CBA \]

There are 6 ways to arrange the vertices, so there are only 6 symmetries.
What happens if you compose two symmetries?

What observations can we make about this table?

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Rc</th>
<th>Rcc</th>
<th>F₁</th>
<th>F₂</th>
<th>F₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>N</td>
<td>Rc</td>
<td>Rcc</td>
<td>F₁</td>
<td>F₂</td>
<td>F₃</td>
</tr>
<tr>
<td>Rc</td>
<td>Rc</td>
<td>Rcc</td>
<td>N</td>
<td>F₃</td>
<td>F₁</td>
<td>F₂</td>
</tr>
<tr>
<td>Rcc</td>
<td>Rcc</td>
<td>N</td>
<td>Rc</td>
<td>F₂</td>
<td>F₃</td>
<td>F₁</td>
</tr>
<tr>
<td>F₁</td>
<td>F₁</td>
<td>F₂</td>
<td>F₃</td>
<td>N</td>
<td>Rc</td>
<td>Rcc</td>
</tr>
<tr>
<td>F₂</td>
<td>F₂</td>
<td>F₃</td>
<td>F₁</td>
<td>Rcc</td>
<td>N</td>
<td>Rc</td>
</tr>
<tr>
<td>F₃</td>
<td>F₃</td>
<td>F₁</td>
<td>F₂</td>
<td>Rc</td>
<td>Rcc</td>
<td>N</td>
</tr>
</tbody>
</table>

- smaller grids look similar
- not symmetric: $Rc \cdot F_i \neq F_i \cdot Rc$
- R's + N's: still get R's, N's
 - BUT F's + F's get R's + N's
- each entry appears exactly once in each row and column
Let’s *step it up*: what about squares? How many symmetries are there?

8 symmetries:

4 Rotational

rotate 0°, 90°, 180°, 270°

4 Reflectional

Q. How to prove that these are all?
What observations can we make about this table?
Other shapes!

For fun, you can take some other symmetric looking objects in your home (hexagons! pyramids! cubes!) and explore the tables you can make of their symmetry operations.
Rearrangements

Start with 5 tiles numbered 1, 2, 3, 4, 5 and lay them at random along the squares of a 5 × 1 rectangle:

\[
\begin{array}{ccccc}
3 & 2 & 4 & 1 & 5 \\
\end{array}
\]

We will call the standard configuration the most natural one:

\[
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

We’ll encounter a few different puzzles, with the goal to move tiles in certain ways and turn any configuration into the standard one.
Question 1

<table>
<thead>
<tr>
<th>5 choices</th>
<th>4 choices</th>
<th>3 choices</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
</table>

- How many configurations of tiles are there? What if there were \(n \) tiles instead of 5?

5 tiles:

\[
5 \times 4 \times 3 \times 2 \times 1 = 5! \text{ configurations}
\]

\[
= 120
\]

\(n \) tiles:

\[
n(n-1)(n-2) \ldots (2)(1) = n! \text{ configurations}
\]
Question 2

If you are only allowed to swap two tiles at a time, can you always get the tiles into the standard configuration? What is the minimal number of moves needed?

1. First, swap 1 with whatever tile is in the first position (if necessary).
2. Swap 2 with second pos.
3. Swap 3 with third pos.
4. Swap 4 with fourth pos.

1, 2, 3, 4 are in correct pos., so 5 must also be!
If you are only allowed to swap two tiles at a time, but one of them must be the tile in the first position can you always get the tiles into the standard configuration?
If you are only allowed to pick three tiles and cyclically rotate them to the right (so, if you picked the tiles in spots 2, 4, and 5, the tile in 2 would go to 4, 4 would go to 5, and 5 would go to 2), can you always get the tiles into the standard configuration?

No. Why not? Idea: rotating 2 tiles, it will always affect another tile.

Ex. [12354]: Why no? Ans. No! not possible.
Question 5

If you are only allowed to swap the first two tiles or cyclically rotate any three tiles to the right, can you always get the tiles into the standard configuration?
Rearrangements and Symmetries

- Can you relate the rigid motions of the triangle to rearrangements of just three tiles? Can you relate the rigid motions of the square to rearrangements of four tiles?

Symmetries corresponded exactly to rearrangements of vertices (= 3 tiles)

- 1 and 3 are opposite and they cannot become adjacent.
Rearrangements and Symmetries

If you consider the symmetries of the shapes, and then all of ways that you could rearrange the tiles, what do these sets have in common?
Both of these are examples of groups. A group is a set of objects G with an operation \star satisfying three properties:

- There is a do nothing object. "identity"
- Each object has an undo object. "inverse"
- The operation is associative: $a \star (b \star c) = (a \star b) \star c$.

![Diagram of a group with objects A, B, and C, showing the do nothing and undo operations.]
Group Examples

- The **dihedral group** is the set of symmetries of an \(n\)-gon.
- The **symmetric group** is the set of rearrangements of \(n\) tiles.
- The **integers** are a group, where the operation is *addition*.
 - Do nothing?
 - Undo?
 - Associativity?

\[\{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \} \]

- what can we add to ...
 - do nothing? \(+ 0\)
 - undo? If we add \(+3\),
 - add \(-3\)
 - undo: \(+n\) : \(-n\)
Another Puzzle

- The 15 puzzle is a puzzle on a 4×4 grid that has 15 numbered squares and one empty square. You are allowed to move the tiles only by sliding squares into the empty square. Can you get between the following two configurations by sliding the tiles into the empty square?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

→

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Another Puzzle

The 15 puzzle is a puzzle on a 4×4 grid that has 15 numbered squares and one empty square. You are allowed to move the tiles only by sliding squares into the empty square. Can you get between the following two configurations by sliding the tiles into the empty square?

```
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>
```
More Group Things!

- This puzzle was recently featured on **Numberphile**! I’ll put the link here:
 https://www.numberphile.com/videos/15-to-1-puzzle

- **Groups** are used in real life in a different ways! They are used in...
 - RSA Encryption (a way to send data securely on the internet)
 - Advanced chemistry and physics (computing where very small particles are likely to be at any given time, and how that’s related to molecular properties)
 - More! Mathematicians even study (unsolved!) questions about groups.
Thank you!