The Art Gallery Theorem

Vic Reiner, Univ. of Minnesota

Monthly Math Hour at UW
May 18, 2014
Victor Klee, formerly of UW
Klee’s question posed to V. Chvátal

Given the floor plan of a weirdly shaped art gallery having $N$ straight sides, how many guards will we need to post, in the worst case, so that every bit of wall is visible to a guard?

Can one do it with $N/3$ guards?
Klee’s question posed to V. Chvátal

Given the floor plan of a weirdly shaped art gallery having \( N \) straight sides, how many guards will we need to post, in the worst case, so that every bit of wall is visible to a guard?

Can one do it with \( N/3 \) guards?
Vasek Chvátal: Yes, I can prove that!
Steve Fisk: OK, but I have a proof from THE BOOK!
Our weirdly-shaped art museum: The Weisman
The floor plan
Who designed that thing?

Vic Reiner, Univ. of Minnesota  The Art Gallery Theorem
Does Frank Gehry ever design reasonable things?
They can get crazier!
Enough fooling around—let’s understand Klee’s question!
A convex gallery needs only one guard
A convex gallery needs only one guard
A star-shaped gallery needs only one guard
A star-shaped gallery needs only one guard
A 4-sided gallery needs only one guard
A 4-sided gallery needs only one guard
A 5-sided gallery needs only one guard
A 5-sided gallery needs only one guard
A 6-sided gallery might need two guards
$N$-sided galleries might need $N/3$ guards: the comb

$N = 21$

$N/3 = 7$
Klee’s question for Chvátal

**Question (V. Klee, 1973)**

How many guards does an $N$-sided gallery need?  
Is the comb the worst case?

**Theorem (V. Chvátal, 1973, shortly thereafter)**

Yes, the combs achieve the worst case: every $N$-sided gallery needs at most $N/3$ guards.

(Of course, you can still have star-shaped galleries with a huge number of sides $N$, but they’ll only need one guard.)
Klee’s question for Chvátal

Question (V. Klee, 1973)

How many guards does an $N$-sided gallery need?
Is the comb the worst case?

Theorem (V. Chvátal, 1973, shortly thereafter)

Yes, the combs achieve the worst case: every $N$-sided gallery needs at most $N/3$ guards.

(Of course, you can still have star-shaped galleries with a huge number of sides $N$, but they’ll only need one guard.)
What if $N$ isn’t divisible by 3?

$N = 22$
$N/3 = 7 \frac{1}{3}$
... by Gunter Ziegler ...
... and Martin Aigner
... aided and inspired by Paul Erdős
Here is an appealing problem which was raised by Victor Klee in 1973. Suppose the manager of a museum wants to make sure that at all times every point of the museum is watched by a guard. The guards are stationed at fixed posts, but they are able to turn around. How many guards are needed?

We picture the walls of the museum as a polygon consisting of $n$ sides. Of course, if the polygon is convex, then one guard is enough. In fact, the guard may be stationed at any point of the museum. But, in general, the walls of the museum may have the shape of any closed polygon.

Consider a comb-shaped museum with $n = 3m$ walls, as depicted on the right. It is easy to see that this requires at least $m = \frac{n}{3}$ guards. In fact, there are $n$ walls. Now notice that the point 1 can only be observed by a guard stationed in the shaded triangle containing 1, and similarly for the other points 2, 3, ..., $m$. Since all these triangles are disjoint we conclude that at least $m$ guards are needed. But $m$ guards are also enough, since they can be placed at the top lines of the triangles. By cutting off one or two walls at the end, we conclude that for any $n$ there is an $n$-walled museum which requires $\lfloor \frac{n}{3} \rfloor$ guards.
Fisk’s proof from THE BOOK that $N/3$ guards suffice
First **triangulate** the gallery without new vertices.
Then 3-color its vertices
The least popular color gets used at most $N/3$ times.

$N=19$ sides, so 19 vertices.
6 red, 7 blue, 6 yellow vertices.
Post guards near the least popular color vertices
How to triangulate without new vertices? Induct!
How to triangulate without new vertices? Induct!
How to 3-color the vertices? Induct!
One can always glue the colorings back together
How to get the red dividing line to start inducting? The flashlight argument!
The flashlight argument

Starting at a vertex $X$, shine a flashlight along the wall to an adjacent vertex $Y$, and swing it in an arc until you first hit another vertex $Z$. Then either $XZ$ or $YZ$ works as the red dividing line.
How good is Fisk’s method for convex galleries?
It depends on the triangulation

**OK**

**Better**

**Best!**
A couple of variations one might wonder about

- Three dimensional galleries?
- Only right-angled walls in two dimensions?
3D explains why we worried about how to triangulate!
Schoenhardt’s (1928) untriangulable sphere in 3D!
Existence of such examples makes the 3-D theory harder.
What about when the walls meet only at right angles?

J. Kahn, M. Klawe, and D. Kleitman proved this result in a 1983 paper titled “Traditional galleries require fewer watchmen”.

**Theorem**

*For right-angled galleries with N sides, \( \frac{N}{4} \) guards suffice.*

One might guess how they feel about Frank Gehry.
Right-angled combs again achieve the worst case

N=20 sides
N/4 = 5 guards
Does the Art Gallery Theorem have real applications?

Not directly that I know. But related ideas from the areas of discrete geometry and combinatorics get used in designing algorithms for

- searching terrains,
- robot-motion planning,
- motorized vacuum cleaners (!)
The set of triangulations of a polygon is interesting!
A polyhedron beloved to me: the associahedron
Thanks for listening!

Bibliography

- Art Gallery Theorems, by J. O’Rourke
- Proofs from THE BOOK, by M. Aigner and G. Ziegler
- Triangulations: Structures for algorithms and applications, by J. De Loera, J. Rambau and F. Santos.