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Definition of “Proof”



Definition of “Proof”

• Proof:  “An argument or evidence establishing   the 
truth of a statement.” 

• From Bing:  
• Definitions of proof (n)
• proof [ proof ]
• conclusive evidence: evidence or an argument that serves to establish a fact or the 

truth of something
• test of something: a test or trial of something to establish whether it is true
• state of having been proved: the quality or condition of having been proved
• Synonyms: resistant, resilient, impervious, immune

http://www.bing.com/Dictionary/search?q=define+proof&qpvt=definition+proof&FORM=DTPDIA
http://www.bing.com/Dictionary/search?q=define+proof&qpvt=definition+proof&FORM=DTPDIA
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http://www.bing.com/Dictionary/search?q=define+impervious&FORM=DTPDIA
http://www.bing.com/Dictionary/search?q=define+immune&FORM=DTPDIA


Statement

There exists an infinite number of prime numbers.

True or False?



Human Proof

Statement:   There exists an infinite number of 
prime numbers.

Proof:   Assume there exists only N distinct primes:

1<p1 = 2 < p2=3 < p3 < …< pN.

Set K= p1 p2 p3 … pN + 1.    

K has a prime factorization say K= q1 q2 q3 …qM



Proof:   Assume there exists only N distinct primes:

1<p1 = 2 < p2=3 < p3 < …< pN.

Set K= p1 p2 p3 … pN + 1.    

K has a prime factorization say K= q1 q2 q3 …qM.

Subtracting 

(*)           q1 q2 q3 …qM - p1 p2 p3 … pN =1.  

If q2 = pj for some j then the left side of (*) is 
divisible by pj with no remainder.   But the  right 
side of (*) is 1 so it is not divisible by pj >1 with no 
remainder.  Contradiction!



Proof:   Assume there exists only N distinct primes:

1<p1 = 2 < p2=3 < p3 < …< pN.

Set K= p1 p2 p3 … pN + 1.    

K has a prime factorization say K= q1 q2 q3 …qM.

Subtracting 

(*)           q1 q2 q3 …qM - p1 p2 p3 … pN =1.  

If q1 = pj for some j then the left side of (*) is 
divisible by pj with no remainder.   But the  right 
side of (*) is 1 so it is not divisible by pj >1 with no 
remainder.  Contradiction!



Beautiful Proof !

Theorem:  There exists an infinite number of prime numbers.

Proof:   Assume there exists only N distinct primes:
1<p1 = 2 < p2=3 < p3 < …< pN.

Set K= p1 p2 p3 … pN + 1.    
K has a prime factorization say K= q1 q2 q3 …qM

Subtracting 
(*)           q1 q2 q3 …qM - p1 p2 p3 … pN =1.  

If q1 = pj for some j then the left side of (*) is divisible by pj with no remainder.   But 
the  right side of (*) is 1 so it is not divisible by pj >1 with no remainder.  
Contradiction!

Q.E.D.



Example of Computer Proof

Use symbolic algebra package like Maple or 
Mathematica.  





A 4-coloring of the states 

http://en.wikipedia.org/wiki/File:Map_of_USA_with_state_names.svg

http://en.wikipedia.org/wiki/File:Map_of_USA_with_state_names.svg


Experiment

Try constructing a map for yourself which 
requires 5 colors.   



Statement

• “Every map of states/countries/counties etc  
can be colored using 4 colors such that no two 
adjacent states are given the same color.   “

• True or False?

• Caveats:  No two states touch at isolated points.    
Each state is connected.  



Statement

“Every map of states/countries/counties etc  can 
be colored using 4 colors such that no two 
adjacent states are given the same color. “

History:

• 1852: Conjectured to be true by Francis 
Guthrie (cartagrapher or botonist).

• Francis Guthrie -> Fredrick Guthrie -> Augustus 
De Morgan -> Arthur Cayley



History

• 1852: Conjectured to be true by Francis Guthrie

• 1878:  Cayley published Guthrie’s conjecture.

• 1879: Kempe published a proof.

• 1880: Tait published a proof.

• 1890: Heawood pointed out a flaw with Kempe’s
proof!

• 1891: Petersen pointed out a flaw with Tait’s proof!

….   

• Many proofs and disproofs apear and get rejected.   
But much progress was made along the way.  



History

• 1852: Conjectured to be true by Francis Guthrie

• 1878:  Cayley published Guthrie’s conjecture.

• 1879: Kempe published a proof.

• 1880: Tait published a proof.

• 1890: Heawood pointed out a flaw with Kempe’s proof!

• 1891: Petersen pointed out a flaw with Tait’s proof!

• ….   Many proofs and disproofs apear and get rejected.   
But much progress was made along the way.   The field of 
graph theory was born into mathematics.   

• 1976 : Appel and Haken publish a  highly controversial 
computer assisted proof.   NY Times refuses to mention it.  



Reformulation

• Instead of coloring maps, the problem was 
generalized to coloring planar graphs.

• Replace each state with a bold dot = vertex.

• Connect the dots representing two states if 
and only if they are adjacent on the map by 
path on the paper = edge.



Place a bold dot in each state.    Each dot is called a vertex of the graph.



Draw  a path between every pair vertices representing adjacent states which 
Only passes through those two states.     Each path is called an edge of the graph.



Draw  a path between every pair vertices representing adjacent states which 
Only passes through those two states.     Each path is called an edge of the graph.



Delete the map.     What remains is a planar graph.

A graph G=(V,E)  is a 
set of vertices V and a 
subset of all pairs of 
vertices E.   

G is planar if all the 
edges can be drawn in 
the plane without 
crossing each other.  

Question:  Can every map of states be represented by a planar graph?  

Question:   Is every graph planar? 



Four Color Theorem

“Every vertex in a planar graph can be assigned 
a color distinct from all of its neighbors using 
at most 4 colors.”



Controvercy over Computer Proof

• Imagine back to 1976… ..    



PDP-8 
Computer 

built 
around 
1970



• Assembly Language (from Wikipedia:  http://en.wikipedia.org/wiki/PDP-8)

• *******************************************************************************

• This complete PDP-8 assembly language program outputs "Hello, world!" to the teleprinter.

• *10                   / Set current assembly origin to address 10,

• STPTR,    STRNG-1     / An auto-increment register (one of eight at 10-17)

•

• *200                  / Set current assembly origin to program text area

• HELLO,  CLA CLL       / Clear AC and Link again (needed when we loop back from tls)

• TAD I Z STPTR / Get next character, indirect via PRE-auto-increment address from the zero page

• SNA           / Skip if non-zero (not end of string)

• HLT           / Else halt on zero (end of string)

• TLS           / Output the character in the AC to the teleprinter

• TSF           / Skip if teleprinter ready for character

• JMP .-1       / Else jump back and try again

• JMP HELLO     / Jump back for the next character

• STRNG,  310           / H

• 345           / e

• 354           / l

• 354           / l

• 357           / o

• 254           / ,

• 240           / (space)

• 367           / w

• 357           / o

• 362           / r

• 354           / l

• 344           / d

• 241           / !

• 0             / End of string

• $HELLO                /DEFAULT TERMINATOR



Controversy over Computer Proof

Appel and Haken Proof (1976).

• Human part of the proof is over 1000 pages 
long and no one else has ever been able to 
verify it.  Many typos were found.

• Computer portion of the proof is written in 
assembly language and no one else has 
programmed it.

• 1478 graphs had to be coded by hand.   

Question: Are you convinced they have a proof? 



Good ideas in the Appel-Haken Proof

Outline of Proof:   

Assume G is a counterexample to the 4CT with a 
minimal number of vertices.  

• Reducibility (human only).

• Unavoidability (computer assisted).

• Algorithm for finding a coloring in G



Good ideas in the Appel-Haken Proof

Outline:   Assume G is a counterexample to the 
4CT with a minimal number of vertices.  

• Reducibility:  AH give a finite list of  1478 
configurations in graphs.   Each one of these 
cannot appear in G because if it did, they gave 
rules to replace G by a smaller graph that 
would still be planar and require more than 4 
colors.



Good ideas in the Appel-Haken Proof

• Unavoidability:  Every minimal counterexample to 
the 4CT must contain one of the configurations on 
the list.  

A configuration is a small neighborhood in a graph. 
AH prove they only need to look at the second 
neighbors of each vertex and they bound the 
number of neighbors in each configuration.  There 
are only a finite number of such graphs.



Good ideas in the Appel-Haken Proof

Outline:   Assume G is a counterexample to the 
4CT with a minimal number of vertices.  

• Reducibility:  AH give a finite list of 1478 
configurations in graphs which cannot appear 
in G.

• Unavoidability:  G must contain one of the 
configurations on the list.  

Question:   What can you conclude about G?



Good ideas in the Appel-Haken Proof

• Reducibility (human only).

• Unavoidability (computer assisted).

Together imply there always exists a 4 coloring of 
any planar graph.     But how do we find one?  

• Algorithm for finding a 4-coloring in G.  
Guaranteed to succeed if a 4-coloring exists.



History
1996:  “A New Proof of the Four Color Theorem”

Published by Robertson, Sanders, Seymour,  and 
Thomas based on the same outline.

• Human part of the proof is about 20 pages. 

• Computer portion of the proof was originally  
written in C and several other people have 
independently programmed it.  

• No graphs had to be coded by hand.  

• Only 633 configurations used.   

Question: Are you convinced they have a proof? 



Some of the 633 Configurations



History
1996:  “A New Proof of the Four Color Theorem”

Published by Robertson, Sanders, Seymour,  and 
Thomas based on the same outline.

• Algorithm:   RSST also give an algorithm to 
find a 4-coloring of a planar graph that takes 
about n2 seconds on a graph with n vertices.



Kepler’s Conjecture

Astronomers were wondering:

What is the best way to pack cannon balls in 
space so they are as close as possible?



Hexagonal Close Packing

http://upload.wikimedia.org/wikipedia/commons/8/8e/Close-packed_spheres.jpg

http://upload.wikimedia.org/wikipedia/commons/8/8e/Close-packed_spheres.jpg
http://upload.wikimedia.org/wikipedia/commons/8/8e/Close-packed_spheres.jpg
http://upload.wikimedia.org/wikipedia/commons/8/8e/Close-packed_spheres.jpg


Kepler’s Conjecture

What is the best way to pack cannon balls in 
space so they are as close as possible?

Conjecture:   The portion of space filled by 
cannonballs in the densest possible packing is 
given by the hexagonal  close packing and has 
density 

.                                                                  



History of Hales Proof

• 1953:  Toth showed that the problem could be 
reduced to a finite check of about 5000 cases.

• 1992:  Thomas Hales and Samuel Ferguson began 
using linear programming to check the density of 
these cases.

• 1996 :  Hales announced the proof was complete.  

• 2005:  Hales’ paper was published after being 
reviewed by a committee of 12 referees who said 
they were 99% certain it was correct.



A halting problem

Problem:   Find all graph types corresponding with rank 5 
starred strong  tableaux under cloning. 

Human part of the proof is 50 pages long.    It is ready to  publish.     
Computer part has been running since January,  but hasn’t finished.  

Questions:   When should we submit it for publication?   
Do you think it will be controversial?



Philosophical Question

What is the value of a computer proof?

• We get a new result which we can build on!

• We learn one more method of using 
computers to prove theorem.

• Every computer proof with no human proof 
contains a miracle which makes it computable!



Summary

Computers can be very helpful proving 
theorems about…

• Algebraic identities.

• Finite calculations.

• Halting problems

And what else?



Lots more 

• Origami:   Can you fold this?   See “Geometric Folding 
Algorithms” by Demaine and O’Rourke.

• Automatic Theorem Checking:  Is this human proof 
correct?   See  “How to Write a Proof” by Leslie 
Lamport in American Mathematical Monthly 102, 7 
(August-September 1993) 600-608.

• Game Theory:  Does this game have a winning 
strategy?    See history of Connect Four in Wikipedia.   


