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HOW MANY OF YOU KNOW WHAT 
THE WORD ‘LOGARITHM’ MEANS?  

(Just asking.  You don’t *have* to know for most of this talk! 



COME WITH ME TO ARIZONA…
THE 
‘GRAND 
CANYON’ 
STATE



COME WITH ME TO ARIZONA… THE 
‘GRAND 
CANYON’ 
STATE

BUT YOU CAN VISIT THE GRAND 
CANYON ANOTHER TIME. 



TODAY WE WILL GO EAST FROM THE 
GRAND CANYON, TO THE LAND OF SOME 
NATIVE AMERICANS: THE HOPI, ZUNI, AND 
NAVAJO PEOPLE. 



THE HOPI 
About 7000 Hopi people live on the Hopi reservation.  It 
is desert country, but they have farmed the land for 
more than 1000 years. 

Some of their villages are the oldest continuously 
settled towns in North America.  Old Oraibi has been 
inhabited since at least 1000 AD. 

Today, they are educating their young people for the 
modern economy. 



THE HOPI 
Their agricultural way of life has led to the development 
of a complex religion, incorporating celebrations of the 
seasons for planting and harvesting.  



Hopi Elementary School 



THE HOPI 
Their religion includes the existence of kachinas, spirits 
who help the Hopi survive in their harsh environment. 
Hopi children learn about these spirits through small 
statues, which are sometimes called “kachina dolls”.  

But to the Hopi these are much more than playthings. 



THE HOPI 
The Hopi are also famous for their ceramics.  They have 
made pots and jars out of clay for hundreds of years.  
More recently, they have developed ceramics as works 
of art.  



This is a pot by Fannie Nampeyo, a famous Hopi potter.



This is the same pot viewed from above.  It has eight copies of the 'bear claw' motif laid out 
in a circle.  

If you know a potter, you can ask her or him how to get the pot to be a circle, and how to 
divide it into eight equal parts for the repeated design.  Those are all interesting 
mathematical questions.  But we will ask some other questions. 



Here we have drawn a (red) circle around the outside of the 
pot, and put a (blue) point at the same claw of each bear claw 
motif.  That makes eight points equally spaced around the 
circle.  



Now we’ve numbered the points and connected them to form an octagon. 



That is, we have started at the point number 8 (the highest number), and gone around 
to 1, then to 2, then to 3…., then back to 8. 



But what if we started at 8 and went to 2, skipping a number.  Then kept skipping 
a single number?  We would get a (yellow) square: 

1400003



We have left out four blue points (four vertices).  We can start with 
the first point that was left out, and go around skipping a single point.  
We get a second square, and the two (yellow) squares form a 
beautiful star: 



Here the star has turned green, and we have taken it off of the original 
beautiful pot.  The star has its own beauty: 



The blue figure is a polygon with 8 sides, sometimes called an ‘octagon’. 
The green figure (the star) is sometimes called a ‘star polygon’. 



What if we start at 8 and connected every third vertex?  
We get this new star polygon: 



This new star is different from the star polygon formed by two 
squares, and also from the octagon.  

What are some of the differences you notice? 



Can you see the 'double square' star inside this new star polygon?  
This new star even includes the original octagon:



So we have connected the points of the octagon skipping no vertices, skipping 
one vertex, and skipping two vertices.   If we skip three vertices, we just get 
the diameter from vertex 8 to vertex 4.  



But we leave out six other vertices.  If we start with each and connect 
them in the same way, we get a 'skinny' star (an 'asterisk'): 

(with its circle) 
(without its circle) 



Notice that both the octagon and the star polygon skipping two points 
can be drawn as one continuous line. 

But the ‘two squares’ star and the asterisk require more than one 
continuous line. 



Counting the octagon and the asterisk as a star, we now 
have four kinds of star polygons from the Nampeyo pot.  
What if we start at vertex 8 and skip 4, 5, 6, or 7 vertices?  
What kinds of star polygons do we get? 



Counting the octagon and the asterisk as a star, we now 
have four kinds of star polygons from the Nampeyo pot.  
What if we start at vertex 8 and skip 4, 5, 6, or 7 vertices?  
What kinds of star polygons do we get? 



We get the same stars, traced ‘backwards’! 

The diagram below shows how we go from point 8 to point 5 clockwise(skipping 4 
points).  It’s the same as skipping just 2 points, but going counter-clockwise.  



Here is a pot by Anderson Peynetsa, a potter from the village of 
Zuni in New Mexico: 



The Zuni are another group of native 
Americans who have lived in the southwest 
for thousands of years.  

They live in the state of
New Mexico.

(New Mexico is the name of one of the 
states of the United States.  It is not in 
the country of Mexico.) 



Like the Hopi, the Zuni were traditionally 
agriculturalists (farmers).  But they speak a 
completely different language and hold 
different religious beliefs.  And their pottery 
is also different: 



Zuni Elementary School 



Here is the top view of Peynitsa’s bowl.  He has put seven deer figures 
around a circle.  



Let us make star polygons with seven points, starting with Peynitsa’s 
bowl. 

 Can we make a regular polygon (regular 7-gon)? 
Can we make an asterisk? 



Here is a regular 7-gon drawn on Peynitsa’s bowl: 



Here is a regular 7-gon drawn without the bowl.  We will number the 
vertices from 0 to 6 (rather than from 1 to 7, just because…) 
 0

16

4

5
2

3



Here we draw a star polygon by skipping one point: starting from 0, we go to 
2, etc. 
Notice that this polygon is formed from one continuous line. 

And it contains the regular 7-gon: 
0

6

5

34

2

1



Here is the star drawn by skipping two points.

Does it consist of one continuous line? 
Does it include any of the stars we’ve already drawn? 



Here is the star drawn by skipping two points.

It consists of one continuous line. 
It includes the 7-gon (blue stripes) as well as the star drawn by skipping 
one point. 



Challenge: Each of the stars contained in the skip-3 star can be measured 
by the radius of its circumcircle.  If the smallest (red) circumcircle has 
radius 1 what are the radii of the other two circumcircles? 

In other words, what are the ratios of their radii? 



Challenge: Each of the stars contained in the skip-3 star can be measured 
by the radius of its circumcircle.  If the smallest (red) circumcircle has 
radius 1 what are the radii of the other two circumcircles? 

In other words, what are the ratios of their radii? 

That is homework for 
you.  

I’ll check back next year 
to make sure you’ve 
done it.  



Here are the four possible nine-point star polygons.  

How was each formed? 

How does each confirm or disprove your hypotheses?  



CHALLENGE:  Choose a number N of equally spaced points 
around a circle. 

Draw as many different stars as you can. 

Can you ‘predict’ which stars are formed by continuous 
lines?  And which stars will ‘close’ before they include 
every vertex? 



CHALLENGE:  Choose a number N of equally spaced points around a circle. 

Draw as many different stars as you can. 

Can you ‘predict’ which stars are formed by continuous lines?  And which stars will ‘close’ before they include every 
vertex? 

For example, if you had 24 points around a circle, would 
the star connecting every third point consist of a single 
line?  Or will you have to start over in drawing it? 

What about the star connecting every fifth point of the 24 
points?  



CHALLENGE:  Choose a number N of equally spaced points around a circle. 

Draw as many different stars as you can. 

Can you ‘predict’ which stars are formed by continuous lines?  And which stars will ‘close’ before they include every 
vertex? 

Or, if you have 24 points around a circle, how many stars 
will consist of a single line?  How many will require 
starting a new line?  

What about 34 points?  Can you generalize your 
observations? 



Here is another interesting way of looking at these star 
polygons.  

Start at any vertex of this simple star 
(which is just a regular 9-gon), and ‘walk’ 
around it.  Think of the center of the 
circle as a pole, and think of holding a 
ribbon attached to the pole.  

As you walk around the polygon, the 
ribbon winds around the pole.  

When you have returned to the vertex 
you started from, the ribbon will have 
wound once around the pole.  



Here is another interesting way of looking at these stars.  

Now start at a vertex of this star 
polygon, and walk around until you 
come back to the vertex. 

This time, the ribbon will wind twice 
around the pole.  

We say that the ‘winding number’ or 
‘density’ of this star polygon is 2.  

The winding number of the simple 9-
gon is just 1.  



What is the winding number of each of these nine-point star 
polygons? 



What is the winding number of each of these nine-point star 
polygons? 

1                                          2                                 UMM…                                        4



What is the winding number of each of these star polygons? 

1) How is the winding number related to the number of points 
skipped?  To the number of the first vertex connected to the 0 
vertex? 

SOME QUESTIONS TO THINK ABOUT 



2) (If you know some geometry…) How is the winding number related to the 
size of the angle at one of the vertices of each star polygon? 

3) What might it mean to have a star polygon with a winding number of -2? 
(That’s “negative 2”.)  

SOME QUESTIONS TO THINK ABOUT 



This is a bowl by a Navajo artist.  



The Navajo people also live in the states of Arizona 
and New Mexico.  

They settled there later than the Hopi or the Zuni.  
They moved down from the north about 600 years 
ago. 



Unlike the Hopi or the Zuni, the Navajo traditions were based on 
hunting (and later sheep herding), rather than farming. 

Their language is unrelated to Hopi or Zuni.  It is related to 
Athabascan languages, spoken mostly in Canada. 



This is Diné college, on the Navajo reservation. 



Here is that bowl by a Navajo artist.  The artist has drawn a 10-point star around the outer circle, here show in light 
blue. 

How did the artist draw this star?  

If you drew the whole star, how would it confirm or refute your hypotheses?  



In this Navajo pot, the artist has already drawn a 10-pointed star.  But he or she has left only the points of the 
star.  We can draw in the rest of the star polygon. 

The surface of the pot is curved, so that the lines we draw may not be right 
on the lines in the picture. 



We can draw in the rest of the star polygon: 

The surface of the pot is curved, so that the lines we’ve drawn may not be 
right on the lines in the picture. 



If you look closely at this remarkable pot, 
you will see that the artist created an 11-
pointed star as well as a 10-pointed star.  

Again, she or he has shown just the points 
of the star. 

Can you trace this rest of this  11-point 
star?  It is created by skipping two points at 
a time around the circle.



Try for yourself: 



SOME MORE ADVANCED IDEAS 

Take a circle.  Fix a point A on the circle.  We 
can start drawing polygons at A. 

Now choose a (random) point B for the 
second vertex of the polygon.  Points A and B 
determine a polygon in the following way: 

Find a third vertex C so that arc AB = arc BC. 
Find a fourth vertex D so that arc BC = arc 
CD.
  
…and so on, until we get back to point A.   

The polygon may be a star polygon, or a 
simple regular polygon 

SOME QUESTIONS: 

1) How can we figure out, from the 
positions of points A and ab, how 
many sides the polygon will 
have? 

OR…



SOME MORE ADVANCED IDEAS 

Take a circle.  Fix a point A on the circle.  We 
can start drawing polygons at A. 

Now choose a (random) point B for the 
second vertex of the polygon.  Points A and 
B determine a polygon in the following way: 

Find a third vertex C so that arc AB = arc BC. 
Find a fourth vertex D so that arc BC = arc 
CD.
  
…and so on, until we get back to point A.   

The polygon may be a star polygon, or a 
simple regular polygon 

SOME QUESTIONS: 

1) How can we figure out, from the positions of points A and ab, how many 
sides the polygon will have? 

OR…

2) Or even if we will EVER come back to point A?  
Maybe we will go round and round, and never hit 
point A a second time.  

That is, the ‘winding number’ of our polygon will 
be infinite.  



Think of things this way.  

We can think of a star polygon as ‘generated’ by a 
single arc of a circle 

For example, take the circle with 8 points on it that 
we started with.

If we start at the top and go around the circle, that’s 
a full rotation.  So this time, instead of labeling the 
point on top 0, we will label it 1 (for 1 full rotation). 



Then the diametrically opposite point is 1/2, for 1/2 a rotation.  If we 
lay it off along the circle a second time, we get back to 1 (rotation):



And the point in the middle of those two is ¼, for ¼ of a rotation. 

That is, if we lay it off four times around the circle, we get back to 1.  We 
have made a full rotation. 



What about the other point in the middle of 1/2 and 1?  That point is ¾ 
of the way around the circle.  How many times must we lay it off 
around the circle to get back to 1 rotation? 

 Well, a second one already goes past the 1, to the point we’ve 
labeled 1/2 .  But let’s go on accumulating ¾ rotations.   



Three of them is 3(3/4) = 9/4 = 1 + ¼ rotations. 

And four of them makes 2 rotations, and we are back to the point 
labeled 1.  We haven’t made just one rotation, but we have made a 
whole number of rotations. 



Another example: the Zuni pot led us to a circle with 7 points marked on 
it.  

We can call the first point 1/7 of a rotation.  Seven of them make a full 
rotation. 



It seems reasonable to call the second point 2/7 of a rotation.  Do seven of 
them make a full rotation?



Well, seven 2/7 rotations get us back to the point labeled 1.  So a 2/7 rotation 
doesn’t give us one rotation.  But it gives us a whole number of rotations. 

In fact when we get back to ‘1’ we have made two full rotations: the 
numerator of the fraction—and the winding number of the corresponding 
star.  



What do you think happens with 3/7?  With 4/7? With 
5/7?  



What do you think happens with 3/7?  With 4/7? With 5/7?  

With 3/7, we lay it off seven times, and we get 3 rotations:  7 (3/7) = 3.
 
With 4/7, we lay it off seven times and we get 4 rotations:  7 (4/7) = 4.
 
With 5/7, we lay it off seven times and we get 5 rotations:  7 (5/7) = 5.



What do you think happens with 3/7?  With 4/7? With 5/7?  

With 3/7, we lay it off seven times, and we get 3 rotations:  7 (3/7) = 3.
 
With 4/7, we lay it off seven times and we get 4 rotations:  7 (4/7) = 4.
 
With 5/7, we lay it off seven times and we get 5 rotations:  7 (5/7) = 5.

If we are making a star with M/7 of a rotation then: 
The denominator of the fraction is the number of rotations before we ‘land 
on’ a full rotation.  
The numerator of the fraction is the winding number of the star.  
 
Is this true for other denominators?  What about in general,  for a fraction 

M/N of a rotation? 



But what if you 
have 1/π of a 
rotation?  



But what if you have 1/π of a rotation?  

Is there such a number?  Sure there is.  It’s approximately 
!

".!$!%&
.  

Is it bigger than 1/3?  Or less than 1/3? 

. 



But what if you have 1/π of a rotation?  Is there such a 
number?  Sure there is.  It’s approximately !

".!$!%&
.  

Is it bigger than 1/3?  Or less than 1/3? 

. It’s less than 1/3: the bigger the 
denominator, the smaller the 
fraction (if the numerators are the 
same, as they are here).  



So we can have 
an arc which is 
1/π of a rotation.  
How many times 
must we lay it off 
to get back to 1? 



So we have an arc which is 1/π of a rotation.  
How many times must we lay it off to get back 
to 1? 

Well, suppose we lay it off M times, and as a 
result we get N rotations.  Of course, M and N 
are whole numbers. 



So we have an arc which is 1/π of a rotation.  How many times 
must we lay it off to get back to 1? 

Well, suppose we lay it off M times, and as a result we get N 
rotations.  Of course, M and N are whole numbers. 

Then M(1/π) = N, and 1/π = N/M,  So π  would equal M/N.  

That cannot happen!  The number π is irrational! 



Then M(1/π) = N, and 1/π = N/M,  So π  = M/N.   That cannot happen!  The number π is irrational! 

Recall that a rational number is one which can be 
represented as a fraction, with integer numerator and 
denominator: 

!
"
	 #"

$
       − %

&
'!"%&
!"%&(

But some numbers, like π, cannot be represented as such 
a fraction.  



IN GENERAL
Take a circle.  Fix a point A on the circle.  We can start 
drawing polygons at A. 

Now choose a (random) point B for the second vertex 
of the polygon.  Points A and B determine a polygon in 
the following way: 

Find a third vertex C so that arc AB = arc BC. 
Find a fourth vertex D so that arc BC = arc CD.
  
…and so on, until we get back to point A.   

The polygon may be a star polygon, or a simple regular 
polygon…



SOME MORE ADVANCED IDEAS 

Take a circle.  Fix a point A on the circle.  We can 
start drawing polygons at A. 

Now choose a (random) point B for the second 
vertex of the polygon.  Points A and B determine 
a polygon in the following way: 

Find a third vertex C so that arc AB = arc BC. 
Find a fourth vertex D so that arc BC = arc CD.
  
…and so on, until we get back to point A.   

The polygon may be a star polygon, or a simple 
regular polygon 

Or, if arc AB is an irrational part of 
the full circumference, it may 
never close! 

The ‘winding number’ may be 
infinite!



Suppose we pick points A and B, and it happens that, when we draw the 
polygon it generates, the polygon does not ‘close’: we never get back to 
point A. 

What will the diagram look like?  Which points on the circle will end up as 
vertices of the polygon?  Which will not?  

This question is answered by some interesting theorems in group theory. 



3) Suppose we pick points A and B, and it happens that, when we draw the polygon it generates, the 
polygon does not ‘close’: we never get back to point A. 

What will the diagram look like?  Which points on the circle will end up as vertices of the polygon?  Which 
will not?  

This question is answered by some interesting theorems in group theory.  

We don’t have time to go into these theorems.  But meanwhile, 
you can think how the following question ends up being related to 
our exploration of star polygons.   (The question is on the next 
slide.) 



3) Suppose we pick points A and B, and it happens that, when we draw the polygon it generates, the polygon does not ‘close’: we 
never get back to point A. 

What will the diagram look like?  Which points on the circle will end up as vertices of the polygon?  Which will not?  

Will the points be ‘evenly distributed’ around the circle? 

Or will there be patches of the circle where none of these rotated 
points will land?  



Will the points be ‘evenly distributed’ around 
the circle? 

Or will there be patches of the circle where 
none of these rotated points will land?  

Perhaps the situation is like the picture at right: 
there are points inside the green areas, but 
none inside the red areas. 

3) Suppose we pick points A and B, and it happens that, when we draw the 
polygon it generates, the polygon does not ‘close’: we never get back to point A. 

What will the diagram look like?  Which points on the circle will end up as vertices 
of the polygon?  Which will not?  



Will the points be ‘evenly distributed’ around 
the circle? 

Or will there be patches of the circle where 
none of these rotated points will land?  

Perhaps the situation is like the picture at right: 
there are points inside the green areas, but 
none inside the red areas. 

Or the picture might look 
even worse: 



It turns out that either the points will form a 
star polygon, or the process will go on forever.  
If the latter, the points will be distributed 
evenly around the circle.  

This thought is made very precise by 
theorems in higher mathematics.  



And here is an unexpectedly related question: 

Look at the sequence of powers of 2: 

1
2
4
8
16
32
64
128
256
512
1024
2048
….



And here is an unexpectedly related question: 

Look at the sequence of powers of 2: 

1
2
4
8
16
32
64
128
256
512
1024
2048
….

Warning: Logarithms coming up.  

But don’t worry, you’ll be able to 
understand the question.  And when 
you learn about logarithms, you’ll be 
able to understand the answer.  



And here is an unexpectedly related question: 

Look at the sequence of powers of 2: 

1
2
4
8
16
32
64
128
256
512
1024
2048
….

If you look at the 
rightmost digits, you will 
see that they repeat in a 
cycle of four (after the 
initial ‘1’): 

2, 4, 8, 6, 2, 4, 8, 6,….



And here is an unexpectedly related question: 

Look at the sequence of powers of 2: 

1
2
4
8
16
32
64
128
256
512
1024
2048
….

If you look at the rightmost digits, you will see that 
they repeat in a cycle of four (after the initial ‘1’): 

2, 4, 8, 6, 2, 4, 8, 6,….

And if you think about how the sequence is generated, by 
‘doubling’, you can convince yourself that this cycle MUST repeat.  
Each’period’ of four numbers is determined by the previous. 

This process is made formal by the beautiful “Principle of 
Mathematical Induction,”  which you will explore in more 
advance courses.  



And here is an unexpectedly related question: 

Look at the sequence of powers of 2: 

1
2
4
8
16
32
64
128
256
512
1024
2048
….

If you look at the rightmost digits, you will see that 
they repeat in a cycle of four (after the initial ‘1’): 

2, 4, 8, 6, 2, 4, 8, 6,….

(That’s not the “unexpectedly related question.”  



Look at powers of 2: 

1
2
4
8
16
32
64
128
256
512
1024
2048 ….

This time look at the sequence of their first (leftmost) digits: 

1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2. . . .

a) Does this sequence repeat?  
b) Will it ever contain the digit 7?  

For example, does there exist a power of 2 whose leftmost digit 
is 7? 

Here is the unexpectedly related question: 



Here is an unexpectedly 
related question: 

Look at powers of 2: 

01
02
04
08
16
32
64
128
256
512
1024
2048 ….

…And look at the sequence of their first (leftmost) digits: 

1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2. . . .

a) Does this sequence repeat?  
b) Does it ever contain the digit 7?  

That is, does there exist a power of 2 whose leftmost digit is 7? 

Now look at the sequence of the first two digits: 
01, 02, 04, 08, 16, 32, 64, 12, 25, 51, 10, 20. . . 

c) Does this sequence contain the number 77? 

That is: Does there exist a power of 2 whose leftmost two 
digits are 77? 



Can a power of 2 begin with the digit 7? 
Here is the relationship to the pottery designs:  

If 2n begins with the digit 7, then we must have 

7x10k < 2n < 8x10k, for some integer k. 

Taking logarithms (base 10), this means that 

 k + log 7 < n log 2 < k + log 8, for integers k and n, or 

Log 7 < n log 2 – k < log 8. 



k + log 7 < n log 2 < k + log 8, for integers k and n, or 

Log 7 < n log 2 – k < log 8. 

Now k is any integer, and we can actually eliminate it by taking 
‘fractional parts’ of each number.  

For positive numbers (all we care about), this just means the part of 
the number to the right of the decimal point.  

For example, the fractional part of 3.14159 is just .14159



Taking logarithms (base 10), this means that 

 k + log 7 < n log 2 < k + log 8, for integers k and n, or 

log 7 < n log 2 –k < log 8. 

Now k is any integer, and we can actually eliminate it by taking ‘fractional parts’ of each number.  For 
positive numbers (all we care about), this just means the part of the number to the right of the decimal 
point.  

For example, the fractional part of 3.14159 is just .14159.  

We write this as {3.14159} = .14159. 

So we can write: 

  {log 7} < {n log 2 –k} < {log 8}



Taking logarithms (base 10), this means that 

 k + log 7 < n log 2 < k + log 8, for integers k and n, or 

log 7 < n log 2 –k < log 8. 

So we can write: 

 {log 7} < {n log 2 –k} < {log 8}

BUT log 7 and log 8 are both between 0 and 1, so their fractional parts are just the 
numbers themselves. 

And subtracting an integer from a number does not change its fractional part.  For 
example: 

{3.14159 -1} = {2.14159} = .14159. 

So we can forget about subtracting k (!!!) 



That is, the statement 

“7x10k < 2n < 8x10(k), for some integers n and k” 

is equivalent to the statement 

“log 7 < {n log 2} < log 8, for some integer n”. 

This makes sense: 

Multiplying by 2, we add log 2 to the number we start with.  So we 
are just asking whether there’s an integer multiple of log 2 whose 
fractional part lies within a certain interval.  



That is, the statement 

7x10k < 2n < 8x10(k), for some integers n and k. 

is equivalent to the statement 

log 7 < n log 2 < log 8, for some integer n. 

This makes sense: 

If we multiply a number by 2, we add log 2 to it is logarithm.  So we are just asking whether there’s an integer 
multiple of log 2 whose fractional part lies within a certain interval.  

Now the fractional part of a number ‘starts over’ as soon as the fractional part grows bigger 
than 1.  So we can think of this problem as going around a circle, forming a ‘star polygon’. 

We wrap the numbers between 0 and 1 around a circle.  If A is the point 0 (and also the point 
1), and if B is the point log 2, we are just finding points C, D, etc. which are multiples of log 2 
around the circle.  



Now the fractional part of a number ‘starts over’ as soon as the fractional part 
grows bigger than 1.  So we can think of this problem as going around a circle, 
forming a ‘star polygon’. 

We wrap the numbers between 0 and 1 around a circle.  If A is the point 0 (and 
also the point 1), and if B is the point log 2, we are just finding points C, D, etc. 
which are multiples of log 2 around the circle.  

And we want to know if one of these points lands in the arc 
between log 7 and log 8.  

That is, this is the same question that we asked about star 
polygons that go on forever. 

The answer is given by an advanced theorem in the theory of 
groups, which you can look up yourself if you’ve followed this far!  



Four boys and four girls line up in front of the class. 

The boys face left and the girls face right. 

Then there is a contest: who scores more, boys or girls? 



Four boys and four girls line up in front of the class. 

The boys face left and the girls face right. 

Then there is a contest: who scores more, boys or girls?

The score for each student is the number of students he 
or she sees in front of him.   



Four boys and four girls line up in front of the class. 

The boys face left and the girls face right. 

Then there is a contest: who scores more, boys or girls?

The score for each student is the number of students he 
or she sees in front of him.   

The score for the girls is the sum of each girl’s score. 
The score for the boys is the sum of each boy’s score. 



Her score is 5His score is 0



There are several ways to prove that the score will be tied



One way to show that the score will always be tied is to notice what 
happens when we exchange two students who are facing each other 
directly: 



The score for each student decreases by 1. 



So the difference in the boys’ and girls’ scores remains the 
same, although each score decreases by one. 



If we continue this process, we get to the arrangement 
above, where both scores are 3+2+1 = 6.  

Since the difference in scores has remained invariant, 
the scores must have been the same to start. 



But that’s not the end! 



We can ask many more questions: 

>What is the largest and smallest possible tie score for 4 boys and 4 
girls?  What about 5 boys and 5 girls? 

>Suppose there were 4 boys and 3 girls.  Who would win? 
There are more boys to see the girls, so maybe the boys have an 
advantage. 
But there are more boys being looked at by girls, so maybe the girls 
have an advantage. 

>Either way, what is the largest difference in scores that can occur?  
What is the smallest difference? 



Most ‘proofs’ of the original statement lead to 
analyses of the other statements. 

‘Proof’ is ‘insight’.  

It’s not just something insisted on by math teachers.  

https://stock.adobe.com/search/images?k=insight+icon&asset_id=537569039


