UW Math Circle
Week 14

This week we are studying linkages, i.e. mechanisms of rigid, fixed length links (imagine a
metal rod) joined at the ends by joints that can rotate freely. Our linkages will all live in
the plane, and so are called planar linkages. Planar linkages were the subject of much study
during the Industrial Revolution, when they were a new and innovative technology.

1 Chains

A chain is a linkage comprised of a sequence of links joined end to end in a line with one
endpoint pinned in place. Figure shows a chain of length 4, with the pinned point marked
by an “x”.

1. Call the region of the plane where the right endpoint can be the reachable region of the
chain. The reachable region of a chain with a single link is a circle. Draw the reachable
regions of the following chains
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For two regions A, B in the plane, the Minkowski sum A + B, is the region you obtain
by sweeping the center of B along the boundary of A and adding this to A. fig. 1 shows
two examples of Minkowski sums.
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Figure 1: The Minkowski sum of two lines, and the Minkowski sum of a circle with a triangle




2. Draw the following Minkowski sums.
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3. The reachable region of a chain with link lengths rq,...r, is the Minkowski sum of the
circles of radii r1,...,7,. Use this to check your answers to question 1.

4. A disk is a region of points of magnitude at most some constant r, written {p : |p| < r}.
(read this as “all the points p such that the magnitude of p is less than or equal to r”).
An annulus (pl. annuli) is a region of points of magnitude between two constants 1, 73,
written {p : r; <|p| < ry} (“all the points p such that the magnitude of p is between
r1 and 75”). Reachable regions of chains are always disks or annuli. Which chains from
item 1 have reachable regions that are disks and which have reachable regions that are
annuli? What are the respective constants?
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5. If a chain has link lengths 7y, ..., r,, when is the reachable region a disk, and when is
it an annulus?

6. How does the reachable region of a chain change if you swap the order of the links?
(Hint: Try starting with a two link chain.)

Stop here. Request the next page from your instructor when your group is done.



2 Degrees of Freedom

We can make more interesting linkages by joining links in more complicated ways. A
useful tool is degrees of freedom, which measures the number of angles in a linkage that
can move independently.

7. The linkage below has two degrees of freedom. Which angles can move independently?
Can you see why three angles cannot move independently?
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When we attach a link of length r to a join, that restricts the point’s movement; it must
always be distance exactly r from the other end of the link, so the linkage loses one
degree of freedom. If a linkage has j joins (unpinned) and ¢ links, then the expected
number of degrees of freedom for the linkage is 25 — r.

8. If we pin another join in the above linkage we get the diagram below. This linkage has
exactly one degree of freedom; the angle at the bottom left join can change and the rest
of the linkage is determined by that angle. Draw the reachable regions for the unpinned
joins.




9. Compute the expected degrees of freedom of the above linkage. Why doesn’t this agree
with the actual number of degrees of freedom?

10. Say a rod between two pinned joins is redundant. Can you design a linkage with an
even number of rods, none of which are redundant, and with one expected degree of
freedom?

11. Design a linkage with negative expected degrees of freedom.



12. Consider a linkage which has joins arranged in an n by m grid, with the first two joins
in the bottom row pinned, and links between North-South-East-West neighboring joins
in the grid (except between the two pinned joins).

Figure 2: 4 x 3 grid linkage

(a) How many degrees of freedom does such a linkage have?

(b) If you add as many links as expected degrees of freedom, the expected number of
degrees of freedom will be zero. Can you place exactly that many additional links
so that the linkage becomes rigid?

13. (a) How many expected degrees of freedom does the following linkage (which has seven
free joins) have?
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(b) Is this linkage in fact rigid?




(c) This linkage has the same underlying graph, so the same expected number of degrees
of freedom. Is it also rigid?

As we have seen, a linkage can have 0 or negative expected degrees of freedom but still
be able to move. Such a linkage is called overconstrained.

14. (Challenge) Design your own overconstrained linkage.

Stop here. Request the next page from your instructor when your group is done.



3 Cognate Linkages

Consider fig. 3. Observe that both linkages have one degree of freedom (check this!) and
that the indicated points both trace out a circle as the linkages move. These linkages
are called cognates of one another.
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Figure 3

15. Consider the linkage from item 13c.

(a) Decompose it into three cognate linkages.

(b) What are the expected degrees of freedom of each of your three linkages?

16. Can you find cognate linkages of the following linkage?



In fact, any linkage involving a triangle connected by links to two pinned points—
confusingly called “four-bar linkages”— has two cognate linkages comprised of a triangle
connected by links to two pinned points. This is known as the Roberts-Chebyshev
Theorem discovered independently by British mathematician Samuel Roberts in 1875
and Russian mathematician Pafnuty Chebyshev in 1878.

17. If you have an overconstrained linkage with —5 expected degrees of freedom, how many
cognate linkages would you expect to decompose it into?

18. (Challenge) Prove the Roberts-Chebyshev theorem.

Stop here. Request the next page from your instructor when your group is done.
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4 Inversion

Define inversion across the unit circle (sometimes just inversion) to be the transforma-
tion taking a point p to the point ¢ of reciprocal magnitude (i.e. |p|-|g| = 1) that lies
on the ray from the origin to p; figure shows an example. This is defined on the plane

except at the origin.

Inversion has the following special property:

(a) Circles centered at the origin go to circles centered at the origin
(b) Lines through the origin go to lines through the origin

(c) Circles not through the origin go to circles not through the origin.
(d) Circles through the origin go to lines not through the origin

19. Where does the circle centered at the origin of radius 2 go under inversion across the

unit circle?

20. Where does the line y = x go under inversion?
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21. Consider the linkage below.

C

The product of distances OB - OD is always 1. What is the trajectory of D?
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22. (Challenge) Show that inversion has the special properties described above.

23. (Challenge) Show that OB - OD = 1.
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