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Modular arithmetic

Let's think about the world of numbers mod n, for some positive integer n.
For integers a, b, we say “a and b are equivalent mod n” if

n divides a — b
It's also the same as saying a and b leave the same remainder when
divided by n. This is what we mean by

a=b mod n.

For example, 10 = —3 = 49 = 13000010 mod 13.

Jacob Richey and Carl de Marcken (UW) Math Circle 4/2/2020



Modular arithmetic

There are n different ‘equivalence classes’ mod n: for example, equivalence
class of 0 mod 3 is

[0] ={0,3,-3,6,—6,9,—9,...}
The equivalence class of —1 is
[_1] = {_]-a _47 _77 27 57 87 .. }
The equivalence class of 2 is
[2] ={2,5,8,-1,—4,—7,...}
Note that [—1] = [2], since —1 and 2 differ by a multiple of 3.

We often drop the brackets and just write 0,1,...,n— 1 for the
equivalence classes.
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Modular operations

We can do addition and multiplication with numbers mod n, and
equivalence still works. For example, multiplying by 2 on both sides
(leaving the mod unchanged):

10=-3 mod 13, = 20= -6 mod 13.

Powers work too:

10=-3 mod13 — 10°=100=7%13+9=9=(-3)> mod 13.
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Modular operations

Dividing and taking roots doesn’t always do what you expect. For
example, dividing by 2 would give

6=2 mod4d — 3=1 mod 4,
which is false! With powers, weird things can happen:
12=32=52=72=1 mod 8.

So there are four ‘square roots of 1' mod 8: 1, 3, 5, and 7.
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Multiplication

Mod 8 multiplication table

01112 |34 |-3-2|—-1
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Slight of hand

Q: What is 172021 mod 127
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Slight of hand

Q: What is 172021 mod 127

A: Use modular arithmagic! A clever observation:

17° =
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Slight of hand

Q: What is 172021 mod 127

A: Use modular arithmagic! A clever observation:

172 =(-5)>=25=1 mod 12.

Thus,

172021 — 172020 .17 = (172)10%0. 17 = 11010, — 17 =5 mod 12.
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Slight of hand

Now you try: find

3100 mod 7.
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Slight of hand

Now you try: find

310 mod 7.
One way: note 33 =27 = —1 mod 7. So
39 =(-1)¥=-1 mod7.
Thus 310 = —1.3=4 mod 7.
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Divisibility testing

An easy way to find any number mod 3 is to add the digits: the sum is the
same mod 3 as the original number.

1234 — digit sum =10=1 mod 3,
and 1234 =3-4114+1=1 mod 3.
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Divisibility testing

An easy way to find any number mod 3 is to add the digits: the sum is the
same mod 3 as the original number.

1234 — digit sum =10=1 mod 3,
and 1234 =3-4114+1=1 mod 3.

Why does this work?
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Divisibility testing

An easy way to find any number mod 3 is to add the digits: the sum is the
same mod 3 as the original number.

1234 — digit sum =10=1 mod 3,
and 1234 =3-4114+1=1 mod 3.
Why does this work? Note 1 =10 mod 3, so

1=10=100=1000=--- mod 3
So for any number x = 1000a 4+ 1006 + 10c + d,

10002 + 1006+ 10c+d=1a+1b+1c+1d mod 3
=a+b+c+d mod3.
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Divisibility testing

Another number that has nice properties with respect to powers of 10 is
11: 10 = —1 mod 11, so

10" = (—1)" mod 11.
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Divisibility testing

Another number that has nice properties with respect to powers of 10 is
11: 10 = —1 mod 11, so

10" = (—1)" mod 11.

So, to find x = 1000a + 1006 + 10c + d mod 11, do the alternating digit
sum:

x=d—-c+b—a modll
For example, 1852 =2—-5+8 —-1=4 mod 11.
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Division

When is it OK to divide?
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Division

When is it OK to divide?

It's OK to divide mod n by any number x such that gcd(n, x) =1, i.e. if x
and n are relatively prime.
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Division

When is it OK to divide?

It's OK to divide mod n by any number x such that gcd(n, x) =1, i.e. if x
and n are relatively prime. For example, dividing by 3 mod 4:

6=2 mod4 — 2:% mod 4.

What does 2/3 mod 4 mean?

Jacob Richey and Carl de Marcken (UW) Math Circle



Division

When is it OK to divide?

It's OK to divide mod n by any number x such that gcd(n, x) =1, i.e. if x
and n are relatively prime. For example, dividing by 3 mod 4:

6=2 mod4 — 2:% mod 4.

What does 2/3 mod 4 mean? It means 2 - 3-1 where 37! is the number
such that 3-37 1 =1 mod 4.
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Division

When is it OK to divide?

It's OK to divide mod n by any number x such that gcd(n, x) =1, i.e. if x
and n are relatively prime. For example, dividing by 3 mod 4:

6=2 mod4 — 2:% mod 4.

What does 2/3 mod 4 mean? It means 2 - 3-1 where 37! is the number
such that 3-37 1 =1 mod 4.

We have 371 =3 mod 4, since3-3=9=1 mod 4. So

2/3=2-3=6=2.
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Inverses

How to find inverses?
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Inverses

How to find inverses? Use the Euclidean algorithm!
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Inverses

How to find inverses? Use the Euclidean algorithm!

The Euclidean algorithm outputs the gecd of two integers a and b.
Example with a =43 and b = 17:
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Inverses

How to find inverses? Use the Euclidean algorithm!

The Euclidean algorithm outputs the gecd of two integers a and b.
Example with a =43 and b = 17:

43=2-17+9
17=1-9438
9=1-8+1
8=8-1

The final number (when there was no remainder) was 1, so
gcd(43,17) = 1.
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Inverses

The Euclidean algorithm gets us half way there. The other half is:

Theorem (Bezout)

For any integers a and b, there exist x and y such that

ax + by = gcd(a, b).
For example, if a= 43 and b =17,
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Inverses

The Euclidean algorithm gets us half way there. The other half is:

Theorem (Bezout)

For any integers a and b, there exist x and y such that

ax + by = gcd(a, b).
For example, if a= 43 and b =17,

Why is this helpful? If we could find the x and y, and gcd(a, b) = 1, we
would get

ax=—by+1, orax=1 mod b.
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Inverses

The Euclidean algorithm gets us half way there. The other half is:

Theorem (Bezout)

For any integers a and b, there exist x and y such that

ax + by = gcd(a, b).
For example, if a= 43 and b =17,

Why is this helpful? If we could find the x and y, and gcd(a, b) = 1, we
would get

ax=—by+1, orax=1 mod b.

Soa=x"1 mod b!
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Inverses

How to find the x and y? Reverse the Euclidean algorithm steps.

43 =2-17+9

17=1-9438

9=1-8+1 1=9-1-8
8=8-1
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Inverses

How to find the x and y? Reverse the Euclidean algorithm steps.

43=2.17+9

17=1-948 1=9-1-(17-1-9)=-1-17+42-9
9=1-8+1 1=9-1-8

8=8-1
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Inverses

How to find the x and y? Reverse the Euclidean algorithm steps.

43=2.17+9 1=-1-17+42-(43-2-17)=-3-17+2-43
17=1-9+48 1=9—-1-(17—1-9)=—-1-1742-9
9=1-8+1 1=9-1-8

8=8-1
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Inverses

How to find the x and y? Reverse the Euclidean algorithm steps.

43=2.17+9 1=-1-17+2-(43-2-17)=-3-17+2-43
17=1-948 1=9-1-(17-1-9)=-1-1742-9
9=1-8+1 1=9-1-8

8=28-1

Sol=-3-17+42-43,i.e. x=—-3 and y =2, and

1771=-3=40 mod 43
(Also, 4371 =2 mod 17.)
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Discussion questions

Some questions we might think about in the future:

e Why does x have an inverse mod n if and only if ged(x, n) = 1?7
(Why does the Reverse Euclidean Algorithm fail if the ged isn't 17)
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Discussion questions

Some questions we might think about in the future:

e Why does x have an inverse mod n if and only if ged(x, n) = 1?7
(Why does the Reverse Euclidean Algorithm fail if the ged isn't 17)

o If x has an inverse mod n, then we can talk about y/x = yx~!

mod n for any integer y. What about irrational numbers, like
v/2 mod 3? Do those ‘make sense’?
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Discussion questions

Some questions we might think about in the future:

e Why does x have an inverse mod n if and only if ged(x, n) = 1?7
(Why does the Reverse Euclidean Algorithm fail if the ged isn't 17)

o If x has an inverse mod n, then we can talk about y/x = yx~!

mod n for any integer y. What about irrational numbers, like
v/2 mod 3? Do those ‘make sense’?

@ In the real numbers, there is no number x such that x2 = —1. So, we
made one up: i> = —1. Also, there is no integer x such that
x?> =3 mod 5. What if we made one up, say a®> =3 mod 5? What
properties would o have?
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Discussion questions

Some questions we might think about in the future:

e Why does x have an inverse mod n if and only if ged(x, n) = 1?7

(Why does the Reverse Euclidean Algorithm fail if the ged isn't 17)

o If x has an inverse mod n, then we can talk about y/x = yx~!

mod n for any integer y. What about irrational numbers, like
v/2 mod 3? Do those ‘make sense’?

@ In the real numbers, there is no number x such that x2 = —1. So, we
made one up: i> = —1. Also, there is no integer x such that
x?> =3 mod 5. What if we made one up, say a®> =3 mod 5? What
properties would o have?

@ We found an algorithm to compute the inverse of a number mod n if
the inverse exists. Can you come up with an algorithm to compute
the square root of a number mod n if it exists?
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