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Number theory problems

To prove Fermat’s two square theorem, we relied on two facts:

Theorem 1 (Wilson’s theorem) If p is prime, then (p− 1)! ≡ −1 mod p.

Lemma 1 (Lagrange’s lemma) If p is prime and p ≡ 1 mod 4 is prime, then there exists an
integer m such that p|m2 + 1.

It’s now your job to prove these two facts! The following steps will walk you through it.

Let’s start with a quick review of modular arithmetic. Using mod 5, for example, means that
means we call two numbers equivalent if their difference is a multiple of 5. For example,
12 ≡ 2 mod 5 because 12 − 2 = 10 is a multiple of 5. Mods are nice because they preserve
addition and multiplication: for any integers a, b, c, d,

a ≡ b mod c =⇒ a + d ≡ b + d mod c, and ad ≡ bd mod c.

Now to the proofs:

1. Let p be prime. Fix an integer 1 ≤ x ≤ p− 1, and consider the list

x mod p, 2x mod p, 3x mod p, . . . , (p− 1)x mod p.

Prove that all the numbers in this list are different, and that none of them are 0.

2. Conclude that every integer 1 ≤ x ≤ p− 1 has a unique inverse mod p, i.e. there exists a
unique number x−1 such that x−1x ≡ 1 mod p.

3. Check that 1! ≡ −1 mod 2 and 2! ≡ −1 mod 3.

4. Suppose p > 3 is prime. Show that you can group the numbers 2, 3, . . . , (p− 2) into pairs
so that the product of each pair is 1. Use this to complete the proof of Wilson’s theorem.
(Hint: use your work from part 1.)

5. Applying Wilson’s theorem directly to p = 4k + 1 gives

(4k)! ≡ −1 mod p. (1)

Show that (4k)! ≡ (2k)!2 mod p by re-grouping the terms of (4k)! in a special way.

6. Conclude that p|(2k)!2 + 1.

Bonus: What is (p− 1)! mod p if p is not prime?

1



Gaussian Integers

We also used the fact that Gaussian integers can always be factored into primes. Let’s explore
the Gaussian integers/primes a little more...

If z and w are Gaussian integers, we say z divides w if there exists a Gaussian integer u such
that w = u · z. There are some special numbers in the Gaussian integers, that we call units:
they are the Gaussian integers of norm 1, i.e. 1,−1, i and −i. The units are special because they
divide everything!

A Gaussian integer z is called a G-prime (Gaussian prime) if it cannot be written as z = x · y
for some Gaussian integers x, y, with neither x nor y a unit.

Regular primes may not be Gaussian primes: for example, 5 is prime, but not G-prime, because
5 = (1 + 2i)(1− 2i). Proving that Gaussian integers are G-prime can be a tricky business. One
useful tool is the norm, N(a + bi) = a2 + b2.

Some problems:

a. Prove that N((a + ib) · (c + di)) = N(a + ib) ·N(c + di) by doing all the multiplications.

b. Let z denote a Gaussian integer. Use part a to show that if N(z) is prime, then z is
G-prime.

c. Show that 1 + i is prime.

d. Show that N(z) is even if and only if 1 + i|z.

e. Show that 2 is not prime by factoring it.

f. List all G-primes that have norm less than 10. How many are there?

g. Show that 3 is prime. Note that the norm of 3 is 9, so you can’t use the test from part b!

h. Determine which of the following are G-prime: 1+3i, 3+4i, 14−5i, 53. If it isn’t G-prime,
find a factorization into G-primes.

i. Note that 5 = (1+2i)(1−2i) = (2+i)(2−i). Why doesn’t this violate unique factorization?

Harder problems:

• Show that if p is a prime and p ≡ 1 mod 4, then there is a unique pair of integers a, b
such that a2 + b2 = p. (Hint: suppose there are two different pairs, and try to derive a
contradiction using prime factorization over the Gaussian integers.)

• For which odd numbers n is n + i G-prime?

• Show that if p is a prime and p ≡ 3 mod 4, then p is G-prime. (Hint: start by showing
that there is no Gaussian integer z with N(z) ≡ 3 mod 4.)

• Suppose N(z) is a square number (1, 4, 9, 16, etc). Does there necessarily exist a Gaussian
integer w with z = w2? Prove that this is always true, or find a counterexample.

2


