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Number theory problems
To prove Fermat’s two square theorem, we relied on two facts:
Theorem 1 (Wilson’s theorem) If p is prime, then (p — 1)! = —1 mod p.

Lemma 1 (Lagrange’s lemma) If p is prime and p =1 mod 4 is prime, then there exists an
integer m such that p|m? + 1.
It’s now your job to prove these two facts! The following steps will walk you through it.

Let’s start with a quick review of modular arithmetic. Using mod 5, for example, means that
means we call two numbers equivalent if their difference is a multiple of 5. For example,
12 = 2 mod 5 because 12 — 2 = 10 is a multiple of 5. Mods are nice because they preserve
addition and multiplication: for any integers a, b, ¢, d,

a=bmodc = a+d=b+d mod ¢, and ad = bd mod c.

Now to the proofs:
1. Let p be prime. Fix an integer 1 <z < p — 1, and consider the list

2 mod p, 2z mod p,3z mod p,...,(p— 1)z mod p.
Prove that all the numbers in this list are different, and that none of them are 0.

2. Conclude that every integer 1 < x < p — 1 has a unique inverse mod p, i.e. there exists a
unique number ! such that 7'z = 1 mod p.

3. Check that 1! = —1 mod 2 and 2! = —1 mod 3.

4. Suppose p > 3 is prime. Show that you can group the numbers 2,3, ..., (p — 2) into pairs
so that the product of each pair is 1. Use this to complete the proof of Wilson’s theorem.
(Hint: use your work from part 1.)

5. Applying Wilson’s theorem directly to p = 4k + 1 gives

(4k)! = —1 mod p. (1)
Show that (4k)! = (2k)!? mod p by re-grouping the terms of (4k)! in a special way.
6. Conclude that p|(2k)!? + 1.

Bonus: What is (p — 1)! mod p if p is not prime?



Gaussian Integers

We also used the fact that Gaussian integers can always be factored into primes. Let’s explore
the Gaussian integers/primes a little more...

If z and w are Gaussian integers, we say z divides w if there exists a Gaussian integer u such
that w = w - z. There are some special numbers in the Gaussian integers, that we call units:
they are the Gaussian integers of norm 1, i.e. 1,—1,4% and —i. The units are special because they
divide everything!

A Gaussian integer z is called a G-prime (Gaussian prime) if it cannot be written as z =z -y
for some Gaussian integers z,y, with neither x nor y a unit.

Regular primes may not be Gaussian primes: for example, 5 is prime, but not G-prime, because
5 = (14 2i)(1 — 2¢). Proving that Gaussian integers are G-prime can be a tricky business. One
useful tool is the norm, N(a + bi) = a® + b2

Some problems:

a. Prove that N((a +b) - (¢ + di)) = N(a +ib) - N(c + di) by doing all the multiplications.

b. Let z denote a Gaussian integer. Use part a to show that if N(z) is prime, then z is
G-prime.

c. Show that 1+ ¢ is prime.

d. Show that N(z) is even if and only if 1 + i|z.

e. Show that 2 is not prime by factoring it.

f. List all G-primes that have norm less than 10. How many are there?

g. Show that 3 is prime. Note that the norm of 3 is 9, so you can’t use the test from part b!

h. Determine which of the following are G-prime: 1+ 34,3+ 44, 14 — 5i,53. If it isn’t G-prime,
find a factorization into G-primes.

i. Note that 5 = (142¢)(1—2i) = (2+14)(2—:). Why doesn’t this violate unique factorization?
Harder problems:

e Show that if p is a prime and p = 1 mod 4, then there is a unique pair of integers a,b
such that a? 4+ b? = p. (Hint: suppose there are two different pairs, and try to derive a
contradiction using prime factorization over the Gaussian integers.)

e For which odd numbers n is n + ¢ G-prime?

e Show that if p is a prime and p = 3 mod 4, then p is G-prime. (Hint: start by showing
that there is no Gaussian integer z with N(z) = 3 mod 4.)

e Suppose N(z) is a square number (1, 4, 9, 16, etc). Does there necessarily exist a Gaussian
integer w with z = w?? Prove that this is always true, or find a counterexample.



