
Euler’s formula: Polytopes
Here are some polytopes:

A polytope is a 3D shape whose sides (or “faces”) are polygons (squares, triangles, hexagons etc. — they
don’t have to be regular). Can you think of any more polytopes?

Problem 1. How many polytopes can you find where:

• . . . all faces are triangles? Quadrilaterals? Pentagons? Hexagons?

• . . . every corner of the shape is in exactly 3 faces? Or 4? Or 5, or 6. . . ?

Problem 2. For each polytope, count the numbers of corners, edges and faces. Do you notice any patterns?
(Hint: Try adding the numbers of corners and faces together.)



Euler’s formula: Planar graphs

Remember that a graph is planar if you can draw it (in the 2D plane) without any of the edges crossing over
each other. Here are some planar graphs:

Can you draw some more?

Problem 3. Try to find some planar graphs where:

• . . . all vertices are contained in exactly 3 edges? Or 4, or 5, or 6,. . .

• . . . every region between the edges has 3 sides? Or 4, 5, etc.. . .

Problem 4. For each planar graph, count the numbers of vertices, edges and regions1. Do you notice any
patterns?

Problem 5. What’s the connection with polytopes?

1Question: Should you count the “outside” of the graph as a region? What do you think?



Euler’s formula: Why is it true?!

On the last worksheet, hopefully you discovered this fact: if you add the numbers of vertices and regions
in a (connected) planar graph, then subtract the number of regions, you always get 1 (or 2, depending on
whether the “outside” counts as a region). In other words, V −E + F = 1, where V , E and F stand for the
numbers of vertices, edges and regions respectively. In this worksheet, we’re going to figure out why this
works!

To begin with, let’s think about trees. A tree is a graph that doesn’t have any cycles — that is, it’s impossible
to follow the edges and get back to where you started without retracing your steps.

Problem 6. Explain why the following fact is true: In every tree that has at least 2 vertices, there is some
vertex which only touches one edge. (Such a vertex is called a leaf.)

(Hint: Try walking along edges without retracing your steps.)

Problem 7. Now, explain why Euler’s formula works for trees.2

(Hint: First, explain why it works for trees with 2 vertices or fewer. Next, if you have a tree with at least 2
vertices, is there something you can do to turn it into a smaller tree?)

Problem 8. Finally, explain Euler’s formula for all planar graphs.

(Hint: If a graph is not a tree, it must contain a cycle. Now, pick an edge in that cycle, and try something
similar to what you did in problem 7.)

2Question: Is it true that every tree is a planar graph?



Euler’s formula: What is it good for?

Now let’s try to use Euler’s formula to prove some stuff!

Problem 9. In problem 1, you probably found it difficult to make any polytopes using only hexagons. Let’s
figure out why: we’ll imagine that we’ve found a polytope using only hexagons, and we’ll try to write down
Euler’s formula for this polytope.

(a) Use the facts that each face has 6 edges and each edge is contained in 2 faces to write an equation
relating E and F .

(b) Now, each face has 6 corners, and each corner is contained in at least 3 faces. (If you like, you can
assume that all corners are in exactly 3 faces — it’ll make the calculations simpler.) Write down an
equation relating V and F .

(c) Finally, substitute all these equations into Euler’s formula. What happens?

Problem 10. Making a polytope using just hexagons is rather hard, so let’s throw in some pentagons as
well! Let P stand for the number of pentagons, and H the number of hexagons. Try to do some similar
calculations to problem 9. What can you say about the number of pentagons you need?


