UW Math Circle

December 10 2015

Here are a bunch of problems. The problems in Section A should be thought of as warm ups; you do not need to present these. Section B is the main focus of the problem set. These are problems similar to those found on other worksheets. You should work mostly on these and hopefully solve a handful. Section C problems are a significant increase in difficulty. You should only do these if you are comfortable with the previous problems and are ready to tackle advanced topics.

\mathbf{A}

- 1. Determine whether the following are functions:
 - (a) $f: \mathbb{R} \to \mathbb{R}, f(x) = \sqrt{x}$
 - (b) $f: \mathbb{Q} \to \mathbb{R}, f(x) = x^2$
 - (c) $f: \mathbb{R} \to \mathbb{Q}, f(x) = x^2$
 - (d) $f: \mathbb{Q} \to \mathbb{Q}, f(x) = x + 1$
 - (e) $f: \mathbb{Z} \to \mathbb{Q}, f(x) = x/2$
- 2. For the functions above, determine whether they are injective or surjective.
- 3. For the functions above, determine their range.
- 4. Explain why division usually cannot be a group operation.
- 5. Explain why $\mathbb Z$ is not a group under multiplication, even if we remove 0.
- 6. Let $a \star b = (a+b)/2$. Is (\mathbb{Q}, \star) a group?
- 7. Let $a \star b = 0$. Is (\mathbb{Q}, \star) a group?
- 8. Find three subgroups of \mathbb{Z} . Find three subgroups of \mathbb{R} that contain \mathbb{Z} .
- 9. Find the smallest group that contains \mathbb{Z} as well as $\sqrt{2}$.
- 10. If k < n, find a subgroup of S_n that has exactly k elements.

\mathbf{B}

- 1. (a) Find a function $f: \mathbb{Z} \to \mathbb{Z}$ that is injective but not surjective.
 - (b) Find a function $f: \mathbb{Z} \to \mathbb{Z}$ that is surjective but not injective.
- 2. Prove that the intersection of two subgroups is also a subgroup.

- 3. Find all subgroups of C_9 , C_{10} , and C_{11} .
- 4. If $f: G \to H$ is a group homomorphism, and G is cyclic, prove that H is cyclic as well.
- 5. Find all homomorphisms from $C_{10} \to C_4$. How about from $C_4 \to C_{10}$?
- 6. Prove that H is a subgroup of G if and only if a and b in H implies ab^{-1} is in H as well.
- 7. Prove that the dihedral group is a subgroup of the symmetric group.
- 8. Find all groups with 4 elements.
- 9. How many elements in S_{10} have order 21?
- 10. Find the highest possible order of an element in S_{14} .

\mathbf{C}

- 1. (a) Prove that if $f: A \to B$ and $g: B \to C$ and $g \circ f: A \to C$ is surjective, then g is surjective. Is f surjective?
 - (b) Prove that if $g \circ f : A \to C$ is injective, then f is injective. Is g injective?
- 2. Let H be a subgroup of an abelian group G.
 - (a) For $g \in G$, let gH be the set of elements gh, where h is an element of G. If $g \in H$, show that gH = H.
 - (b) If g was not in H, show that gH and H don't overlap at all.
 - (c) Show that qH has the same number of elements as H.
 - (d) For g_1 and g_2 in G, show that g_1H and g_2H are either the same or don't overlap at all. Such sets gH are called *cosets* of H in G.
 - (e) Recall that G was abelian. Prove that the set of cosets is a group. This is called the quotient group G/H and is an extremely important algebraic topic.
- 3. In the above problem, suppose G was not abelian. Then we can define a different type of coset: Hg instead of gH. Determine the condition necessary on H for these two definitions to cosets to be same. If H satisfies this condition, it is called a *normal* subgroup. Prove that all subgroups of an abelian group are normal.
- 4. Let $f: G \to H$ be a group homomorphism. Let S be the subset of G that f maps to e_H . Show that S is a subgroup of G. Furthermore, show that S is a normal subgroup. S is called the *kernel* of f in G.
- 5. Show that the subgroup of a cyclic group is cyclic.