UW Math Circle, Autumn 2013 - Homework 7

Due November 21, 2013

This week we extended our counting approach from last week to determine the number of ways to tile a ring of n tiles with 1×1 and 1×2 tiles (see problem 3 of homework 6). We denoted this number by L_n and found that

 $L_1 = 1$ $L_2 = 3$ $L_n = L_{n-1} + L_{n-2}$

Notice that the L_n satisfy the same recurrence relation as the Fibonacci numbers f_n , but start with 1,3 rather than 1, 1. We used our interpretations of f_n and L_n as the number of ways to tile a $1 \times n$ board and ring, respectively, to prove some interesting relationships between f_n and L_n . See the weekly email for details.

Practice your understanding of our discussion of the f_n and L_n numbers by solving the following problems. Please write down your solution to at least one of these problems and turn it in next week.

1. In class we showed that the number of ways to tile a ring of n tiles with 1×1 and 1×2 (curved) blocks is L_n . Find the number of ways to tile a ring of n tiles with 1×1 and 1×2 and 1×3 (curved) blocks. Give this sequence a name! (Be creative!)

2. In class we showed that $f_n^2 = f_{n-1}f_{n+1} + (-1)^n$. Show that $L_n^2 = L_{n-1}L_{n+1} + 5 \cdot (-1)^n$

3. In class we showed that $f_{2n-1} = L_n f_{n-1}$. For what n, m, and N is it true that $f_N = L_n f_m$?

4. Show that

$$f_n + f_{n-1} + f_{n-2} + 2f_{n-3} + \ldots + 2^{n-2}f_0 = 2^n$$