
Math Circle - Bijective Proofs

In combinatorics, it is often the case that we can prove an equation is true by
means of some really tedious algebraic manipulation of both sides of the equality.
This has two major downsides: 1) it is quite easy to make small algebra errors
when moving around factorials and adding fractions – chooses and factorials are
rarely fun to work with algebraically. And 2) such a solution offers little insight
into the reason why the formula is true.

In contrast, the preferred method of proving the validity of a formula is called
a bijective proof. This method of proof is ideal for situations in which you want
to prove the truthiness of an equation of the form

expression #1 = expression #2.

In such a case, the step-by-step description of a bijective proof is:

1. Identify a quantity #1 which expression #1 counts.

2. Identify a quantity #2 which expression #2 counts.

3. Show that quantity #1 = quantity #2.

We say that have found a bijection between the two quantities – that is, a one-
to-one correspondence between them. It can save you some work if you can make
it so that quantities #1 and #2 are actually exactly the same!

Example. Prove that

(
n

k

)
=

(
n

n− k

)
. Verify this for n = 5 and k = 2.

Solution. Recall that
(

n
k

)
denotes the number of ways of choosing k balls

from a collection of n distinguishable balls, where the order of your choice does
not matter. In a similar fashion we know that

(
n

n−k

)
denotes the number of ways

of forming a collection of n− k balls from the total n.
But forming a collection of k balls is the same as not forming a collection with

the other n − k balls. In other words, the number of ways of forming collections
of k balls is exactly the same as the number of ways of not forming collections of
n− k balls. Hence, the two expressions are the same, which finishes the proof. �

1



Give a bijective proof of each of the following formulas. In each problem it is
assumed that n ≥ k ≥ 0. Numerically verify each formula for some small n and k.

1.

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
= 2n.

Hint. Show that both expressions count the number of subsets of {1, 2, · · · , n}.

2.

(
n

k

)
+

(
n− 1

k

)
+

(
n− 2

k

)
+ · · ·+

(
k

k

)
=

(
n + 1

k + 1

)
.

Hint. The number on the right represents the number of ways of choosing
k + 1 balls from a collection of n + 1 distinguishable balls.

3.

(
n

1

)
+ 6

(
n

2

)
+ 6

(
n

3

)
= n3.

Hint. The number on the left is the number of triples of the form (a, b, c),
where a, b, and c can be any positive integer 1, 2, . . . , n.

4. A composition of n is a way of writing n as a sum of positive integers,

n = a1 + · · ·+ ak.

Different orders count as different compositions of n. Let c(n) denote the
total number of compositions of n. For example, c(4) = 8 because the 8
compositions of 4 are:

1 +1 +1 + 1, 1 +1 +2, 1 +2 +1, 2 +1 +1, 1 +3, 3 +1, 2 +2, 4.

Prove that c(n) = 2n−1 by showing that c(n) is the same as the number of
subsets of a set with n− 1 elements.
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