
Math Circle - Robotic Language

Recall that a formal grammar is a collection of four things:

i. A finite alphabet denoted Σ. Elements in Σ are called terminals. Usually
terminals are denoted with lower-case letters. Strings of terminals are called
words.

ii. A finite set of states denoted by Ω. Usually states are denoted with upper-
case letters.

iii. A particular starting state S ∈ Ω.

iv. A finite set of rules for transforming states into words consisting of both
states and/or terminals.

In the future there are only robots. Your group is an extrememly important
team of robots whose job it is to program all the new little robots to understand the
robot language. You do this by constructing formal grammars which generate the
correct language for each robot. If you fail in your duties, the entire next generation
of robots will not be able to communicate, and the entire robot civilization will
fall. Failure is not an option.

1. Some robots will just be add/multiply machines. These AM machines
have knowledge of only the simplest alphabet consisting of 5 terminals: Σ =
{+, ∗, (, ),X}. Here + and ∗ stand for addition and multiplication, the parentheses
are used for grouping and order of operations, and X is a placeholder for any
number to be added later.

The language that the AM machines must understand is correct groupings of
symbols in Σ to make valid algebraic expressions. For example, X + X ∗ (X + X)
is in their language, but +X(∗X is not. Create a grammar for the AM machines.

1



2. Another class of robots are the modular robots. Each
of these robots understands a language built on the
alphabet {0, 1, . . . , 8, 9}. Notice that any word using
this alphabet is just a nonnegative integer written in
base 10.

One subclass of modular robots is the mod-twos. The
mod-twos are given any nonnegative integer written in
base 10. This number is in their language if it is even.
It is not if it is odd. Create a grammar which generates
the language of the mod-twos.

3. The mod-threes are another subclass of modular robots. The mod-threes
are also given any nonnegative integer written in base 10. The number is in the
language of the mod-threes if it is divisible by 3. If it is not, they don’t understand
that number. Create a grammar which generates the language of the mod-threes.

4. An extremely important class of robots is the comparers. The comparers
understand a language built on the alphabet {0, 1, ?}. Their job is to take two
strings consisting of 0s and 1s and see if they have the same length. The two
strings are separated by the ? symbol. That is, the language that the comparers
need to understand is words that look like u?w, where u and w are both (possibly
different) strings of 0s and 1s which have the same length.

Some example words understood by the comparers are 010?110, 01101?11111,
and 10?10. Some words which are not in the language of the comparers are 11?001,
0 ? 1001, and 00 ? 1 ? 01 ? 1. Create a grammar which generates the language of
the comparers.

5. What other types of simple robots can you imagine in the future? These
robots should understand a language which is easy to explain (e.g. numbers which
are prime, or Fibonacci numbers). Do you think that you can create grammars
for all these robots?

2


