MATH CIRCLE HOMEWORK

- **1.** What are the last 4 digits of 9999⁹⁹⁹⁹?
- 2. In a right triangle, the longest side is called the *hypotenuse* and the other two sides are called *legs*. Prove that if a right triangle has all integer side lengths and the hypotenuse has even length, then the length of both legs must also be even.
- **3.** The divisibility rule for 3s and 9s involves looking at the sums of the digits. Discover and prove a similar divisibility rule for 11s.
- **4.** I have encoded a secret message below, and it's your job to decrypt it. The encryption method I used is described as follows: to eahc letter of the alphabet we can associate an integer 0 through 25:

$$\mathbf{A} = 0$$
 $\mathbf{B} = 1$ $\mathbf{C} = 2$ \cdots $\mathbf{Z} = 25$

I then piecked a key value $\alpha = 21$, and I changed each letter by multiplying its associated value by α , then reducing modulo 26.

For example, $\mathbf{Z} = 25$, and $\alpha \cdot 25 = 525 \equiv 5 \pmod{26}$. Since $\mathbf{E} = 5$, this means \mathbf{Z} is changed to \mathbf{E} .

(1) Here's the message to decode:

SAJR QMTQXG MO VANANAO!

- (2) Re-encode the message you decoded above, this time using the value $\alpha = 2$. Do you foresee any problems if you were trying to now decode this message?
- (3) For any ket α between 0 and 25 you'll be able to encode any message, but decoding may prove difficult for certain keys. Which values of α do you think will give you no trouble?
- (4) (Challeng) Prove your guess from part (3).
- 5. (Challenge) The number 2 is drawn on a blackboard. two players take turns changing this number with the following rule: given a number x on the blackboard, a player may add any nonnegative number smaller than x to that number to obtain a new number which they then write on the blackboard in place of x. The player who reaches 1000 first wins. What is the winning strategy?