Algorithms reference

Greatest common factors - Euclidean algorithm

To compute the greatest common factor of a and b :

1. Put a and b in the first column of a table (bigger number on top).
2. Fill in the next column: if the previous column contains x and y, the next column contains y and $x \bmod y$.
3. Repeat step 2 until you get a 0 . The number above the 0 is the greatest common factor of a and b.

Multiplicative inverses - extended Euclidean algorithm

To compute the multiplicative inverse of a modulo q :

1. Write down the Euclidean algorithm table for a and q. A multiplicative inverse exists as long as the greatest common factor of a and q is 1 .
2. Add another row to the table: if some column contains x and y, the third row will contain $x \div y$ rounded downwards. Ignore the column with 0 .

	x	
y		
	$\operatorname{round}(x \div y)$	

3. Add a fourth row: put a 1 under the first column and a 0 sticking out to the left of the 1 , then fill in each entry with (cell two to the left) $-($ cell to left $) \times($ cell above left $)$.

4. When you reach the second-last column, the last number in the fourth row is the multiplicative inverse of a modulo q.

Modular powers

To compute $a^{b} \bmod q$:

1. Set $T=1$.
2. Convert b to binary, and read left to right. For each digit:

- If the digit is $0:$ replace T with $T^{2} \bmod q$.
- If the digit is 1 : replace T with $T^{2} \times a \bmod q$.

3. The final value of T is $a^{b} \bmod q$.
