UW Math Circle

1. Color a 2 by 2 square piece of paper on both sides as shown.

Fold the paper into a 1 by 1 square with each "layer" having only a single color. What are the possible orders for the colors to be in? What orders are impossible? Does your answer change if only one side is colored?
2. Fold a square piece of paper so that the lower left corner rests on the top horizontal line and label your square as shown.

What is the length of the line connecting A to P ? What is the length of the line connecting B to Q ? Make a table comparing values as P moves along the line connecting A and B.
3. For each of the following questions, your points can be any points on a piece of paper and your lines can be any lines.
i. Given two points p_{1} and p_{2}, fold a line connecting them. How many ways can this be done?
ii. Given two points p_{1} and p_{2}, fold p_{1} onto p_{2}. How many ways can this be done?
iii. Given two lines l_{1} and l_{2}, fold line l_{1} onto l_{2}. How many ways can this be done?
iv. Given a point p_{1} and a line l_{1}, make a fold perpendicular to l_{1} passing through the point p_{1}. How many ways can this be done?
v. Given two points p_{1} and p_{2} and a line l_{1}, make a fold that places p_{1} onto l_{1} and passes through the point p_{2}.
vi. Given two points p_{1} and p_{2} and two lines l_{1} and l_{2}, make a fold that places p_{1} onto line l_{1} and places p_{2} onto line l_{2}.
4. We call the six operations above "Huzita's Origami Axioms"! These operations are very close to the constructions you are able to do with a compass and straight edge. For example, if you had two points p_{1} and p_{2}, you could use a straight edge to draw a line between them. This is very similar to the first of Huzita's axioms.
A straight edge allows us to draw a straight line (of an unknown length) and a compass allows us to draw a circle (of an unknown radius) centered at a given point. Which Huzita's axioms would you be able to "replicate" in this manner with a straight edge and compass? Which would you not be able to replicate?
5. Take a square piece of paper. Let the bottom edge be l_{1} and take p_{1} to be a point in the middle and close to l_{1}. Then choose p_{2} to be anywhere on the left or right edge of the square and perform Huzita's fifth axiom. Then choose a different p_{2}. Repeat this 8 or 9 times. What do you see?
6. Repeat the exercise above with Huzita's sixth axiom. What do you notice?

Bonus Questions!

1. Paper folding can solve many problems that are not solvable with a straight edge and compass. Try out the construction below for yourself and see if you can prove why it works!

Trisecting an Angle

(a) Let the angle you want to trisect originate from the lower left corner. Call this angle A. Make two parallel, equidistant horizontal creases at the bottom.
(b) Then perform the sixth axiom. Fold p_{1} onto l_{1} and p_{2} onto l_{2}.
(c) With this folded, refold crease l_{1}, now in its new position, and extend it all the way up. This new crease, l_{3}, is the crease we want. Unfold step 2 and extend crease l_{3} to the lower left corner (it should hit it!). The crease l_{3} will mark the angle ($2 / 3$) A.
2. Suppose that we start with four points (say, $p_{1}=(0,0), p_{2}=(1,0), p_{3}=(1,1)$, and $p_{4}=(0,1)$ which correspond to the four corners of our square paper) and the lines $l_{1}=$ line between p_{1} and $p_{2}, l_{2}=$ line between p_{2} and $p_{3}, l_{3}=$ line between p_{3} and p_{4}, and $l_{4}=$ line between p_{4} and p_{1}. Can we find a smaller list of basic origmai operations? In other words, are any of Huzita's axioms redundant?

