UW Math Circle

1. Color a 2 by 2 square piece of paper on both sides as shown.

Fold the paper into a 1 by 1 square with each "layer" having only a single color. What are the possible orders for the colors to be in? What orders are impossible? Does your answer change if only one side is colored?

2. Fold a square piece of paper so that the lower left corner rests on the top horizontal line and label your square as shown.

What is the length of the line connecting A to P? What is the length of the line connecting B to Q? Make a table comparing values as P moves along the line connecting A and B.

- 3. For each of the following questions, your points can be any points on a piece of paper and your lines can be any lines.
 - i. Given two points p_1 and p_2 , fold a line connecting them. How many ways can this be done?
 - ii. Given two points p_1 and p_2 , fold p_1 onto p_2 . How many ways can this be done?
 - iii. Given two lines l_1 and l_2 , fold line l_1 onto l_2 . How many ways can this be done?
 - iv. Given a point p_1 and a line l_1 , make a fold perpendicular to l_1 passing through the point p_1 . How many ways can this be done?
 - v. Given two points p_1 and p_2 and a line l_1 , make a fold that places p_1 onto l_1 and passes through the point p_2 .
 - vi. Given two points p_1 and p_2 and two lines l_1 and l_2 , make a fold that places p_1 onto line l_1 and places p_2 onto line l_2 .
- 4. We call the six operations above "Huzita's Origami Axioms"! These operations are very close to the constructions you are able to do with a compass and straight edge. For example, if you had two points p_1 and p_2 , you could use a straight edge to draw a line between them. This is very similar to the first of Huzita's axioms.

A straight edge allows us to draw a straight line (of an unknown length) and a compass allows us to draw a circle (of an unknown radius) centered at a given point. Which Huzita's axioms would you be able to "replicate" in this manner with a straight edge and compass? Which would you not be able to replicate?

- 5. Take a square piece of paper. Let the bottom edge be l_1 and take p_1 to be a point in the middle and close to l_1 . Then choose p_2 to be anywhere on the left or right edge of the square and perform Huzita's fifth axiom. Then choose a different p_2 . Repeat this 8 or 9 times. What do you see?
- 6. Repeat the exercise above with Huzita's sixth axiom. What do you notice?

Bonus Questions!

1. Paper folding can solve many problems that are not solvable with a straight edge and compass. Try out the construction below for yourself and see if you can prove why it works!

Trisecting an Angle

- (a) Let the angle you want to trisect originate from the lower left corner. Call this angle A. Make two parallel, equidistant horizontal creases at the bottom.
- (b) Then perform the sixth axiom. Fold p_1 onto l_1 and p_2 onto l_2 .
- (c) With this folded, refold crease l_1 , now in its new position, and extend it all the way up. This new crease, l_3 , is the crease we want. Unfold step 2 and extend crease l_3 to the lower left corner (it should hit it!). The crease l_3 will mark the angle (2/3)A.

2. Suppose that we start with four points (say, $p_1=(0,0)$, $p_2=(1,0)$, $p_3=(1,1)$, and $p_4=(0,1)$ which correspond to the four corners of our square paper) and the lines l_1 = line between p_1 and p_2 , l_2 = line between p_2 and p_3 , l_3 = line between p_3 and p_4 , and l_4 = line between p_4 and p_1 . Can we find a smaller list of basic origmai operations? In other words, are any of Huzita's axioms redundant?