UW Math Circle March 9, 2017

1. Show that $1 + 3 + 5 + \dots + 2n - 1 = n^2$.

2. Show that if there are several lines dividing the plane into different regions you can always color the regions black and white so that regions which share a border are different colors.

- 3. Remember: the Fibonacci numbers are the sequence $1, 1, 2, 3, 5, \ldots$, where the n^{th} Fibonacci number is the sum of the previous two. In symbols: $F_n = F_{n-2} + F_{n-1}$.
 - (a) Find an expression for $F_1 + F_2 + F_3 + \cdots + F_n$, and use induction to prove that your expression is correct.
 - (b) Find an expression for $F_1 + F_3 + F_5 + \cdots + F_{2n-1}$, and prove that your expression is correct.
 - (c) Find an expression for $F_2 + F_4 + F_6 + \cdots + F_{2n}$, and prove that your expression is correct

4. Show that
$$1^2 + 2^2 + \dots + n^2 = \frac{(n)(n+1)(2n+1)}{6}$$

5. Show that 111...111 (there are 3^n ones) is divisible by 3^n .