UW Math Circle

March 9, 2017

1. Show that $1+3+5+\cdots+2 n-1=n^{2}$.
2. Show that if there are several lines dividing the plane into different regions you can always color the regions black and white so that regions which share a border are different colors.
3. Remember: the Fibonacci numbers are the sequence $1,1,2,3,5, \ldots$, where the $n^{\text {th }}$ Fibonacci number is the sum of the previous two. In symbols: $F_{n}=F_{n-2}+F_{n-1}$.
(a) Find an expression for $F_{1}+F_{2}+F_{3}+\cdots+F_{n}$, and use induction to prove that your expression is correct.
(b) Find an expression for $F_{1}+F_{3}+F_{5}+\cdots+F_{2 n-1}$, and prove that your expression is correct.
(c) Find an expression for $F_{2}+F_{4}+F_{6}+\cdots+F_{2 n}$, and prove that your expression is correct
4. Show that $1^{2}+2^{2}+\cdots+n^{2}=\frac{(n)(n+1)(2 n+1)}{6}$.
5. Show that $111 \ldots 111$ (there are 3^{n} ones) is divisible by 3^{n}.
