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Abstract. We discuss a numerical implementation of conformal welding for
finitely connected regions using the geodesic zipper algorithm and Koebe’s
iterative method for computing conformal maps to regions bounded by circles.
We also show that a conformal map from a finitely connected region to a region
bounded by circles can be written as a composition of finitely many conformal
maps of simply connected regions.
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1. Introduction

The Geodesic Algorithm, part of the zipper family of algorithms for the numerical
computation of conformal maps, was originally developed in the 1980s to do
conformal welding. There are several variants of conformal welding, all of which
can be numerically approximated using the geodesic or zipper algorithms. One
version is as follows: given a Jordan curve J , let f and g be conformal maps of the
unit disk D = {z : |z| < 1} and the exterior of the closed disk, De = {z : |z| > 1},
onto the two components of the complement of J . Then h = f−1 ◦ g is an
increasing homeomorphism of the unit circle ∂D onto itself, called a welding
homeomorphism. If we are given an increasing homeomorphism h of ∂D, the
conformal welding problem is to find a Jordan curve J and conformal (one-to-
one and analytic) maps f and g of the unit disk and its exterior onto the two
components of the complement of J so that f(h(x)) = g(x), for all x ∈ ∂D. See
Sharon and Mumford [8] for the application of conformal welding to vision or
recognition problems. The welding homeomorphism h is called the “fingerprint”
of a region in their work. The welding is viewed by some authors as pasting
together two hemispheres in a prescribed way on the bounding circles, with a
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map which is conformal in each hemisphere. The image of the pasted circles is a
Jordan curve on the sphere. Stereographic projection is a conformal map of the
sphere (minus the north pole) onto the plane, and the map 1/g(1/z) extends to
be conformal in a neighborhood of the origin, so the two versions are equivalent.

In this article we consider an extension of these concepts to finitely connected
regions. Section 2 discusses welding homeomophisms associated with a finitely
connected region viewed as the complement of Jordan regions on the sphere, and
then gives a technique for solving the welding problem in this context. Along
the way, we prove a theorem that may be of independent interest: a finitely
connected region with n holes can be conformally mapped onto the complement
of n disks using only n conformal maps of simply connected regions. In Sec-
tion 3 we discuss one of the main ingredients for the numerical computation of a
conformal welding Koebe’s iterative method for conformally mapping a finitely
connected region to the complement of a union of disks. In Section 4 we give an
example of the numerical solution of a conformal welding problem and an exam-
ple of the computation of weldings associated with a finitely connected region.
The technique used for conformal mapping of simply connected regions is the
geodesic zipper algorithm. The geodesic zipper algorithm (see [6]) was invented
in the 1980s to create a Jordan arc from a given welding of the positive reals to
the negative reals. A simple modification immediately gave weldings of the unit
circle to itself or the real line to itself, along with the associated conformal maps
to the complementary regions. For the convenience of the reader, the procedure
is outlined in Section 4. Reversing this procedure gave a method of computing
conformal maps from the disk or a half plane to the interior and exterior of a
given Jordan curve along with their inverse maps.

2. Conformally welding disks onto the sphere

We begin by describing how conformal maps of simply connected regions may be
used for finitely connected regions. Let S2 denote the unit sphere, or Riemann
sphere, in R3. The plane C together with the point “at infinity” is conformally
equivalent to S2 via stereographic projection. A disk on the sphere will mean
the conformal image of a disk via stereographic projection. The bounding circle
is the intersection of a plane with S2. A (closed) Jordan curve on S2 determines
two simply connected regions by the Jordan Curve Theorem, each of which is
topologically equivalent to a disk. So by the Riemann Mapping Theorem and
Koebe’s Theorem [4], given n disjoint simply connected regions Uj on S

2 bounded
by disjoint Jordan curves, there exists conformal maps gj of D onto Uj and a
conformal map f of S2 \

⋃
j Dj onto S2 \

⋃
j Uj where Dj are closed disks on S2.

Then hj = f−1 ◦ gj are called the welding homeomorphisms.

The conformal welding problem in this context is as follows: suppose D1, . . . , Dn

are n closed disks on S
2 and suppose that we are given n homeomorphisms
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hj : ∂D → ∂Dj , j = 1, . . . , n. Find conformal maps gj from D into S2 and a
conformal map f from S2 \

⋃
j Dj into S2 so that

(1) f(hj(ζ)) = gj(ζ),

for all ζ ∈ ∂D, j = 1, . . . , n. More descriptively, the maps gj and f conformally
weld, or sew, copies of the unit disk into the holes Dj . The result is a sphere
with patches, bounded by Jordan curves Jj = gj(∂D) = f(∂Dj).

Before proceeding, we mention some caveats to these procedures. The welding
homeomorphism for a Jordan curve is not unique since each conformal map gj

may be pre-composed with a conformal homeomorphism of the unit disk. This
lack of uniqueness can be accounted for by a suitable normalization of the confor-
mal maps. The Jordan curves obtained for a given homeomorphism also have a
lack of uniqueness since we can post-compose with a Moebius map on the sphere.
But again, this is avoided by a suitable normalization.

There are more serious impediments to this procedure if we allow arbitrary weld-
ings and arbitrary Jordan curves. There are non-Moebius equivalent Jordan
curves with the same welding and there are homeomorphisms which are not
weldings. However these curves and homeomorphisms are extremely “wild” and
not suitable for numerical calculation. For this reason we assume henceforth,
unless stated otherwise, that all of our regions are bounded by quasicircles and
that all welding homeomorphisms are quasisymmetric (see [3] for definitions of
quasicircles and quasisymmetric). Then it is known that given an increasing
quasisymmetric homeomorphism of the unit circle onto itself there is a quasicon-
formal conformal welding and each quasiconformal conformal welding uniquely
determines (up to a Moebius map) a Jordan quasicircle in the plane. We point
out the simple example of the welding h(eit) = eit/2, when 0 ≤ t ≤ π and
h(eit) = ei(3t/2−π), when π ≤ t ≤ 2π corresponds to a Jordan curve with an
infinite spiral at the images of 1 and −1. For numerical computations, we will
restrict our attention to piecewise smooth curves and weldings so that they can
be approximated by the discrete versions discussed below. The method also
applies to quasicircles with small quasiconformal constants. Since any quasicon-
formal map can be written as a composition of quasiconformal maps with small
constants, it can be applied as well to general quasicircles, but we do not treat
this extension in this article.

For ease of description we will work on the plane instead of the sphere, keeping
in mind that infinity corresponds to one point on the sphere. When convenient
though, we will use the shorthand notation S2, as is common in this field. An
increasing homeomorphism h of the unit circle onto the circle C = {z : |z−c| = r}
is a homeomorphism h : ∂D → C such that arg(h(eiθ)−c) is an increasing function
of θ. We require all homeomorphisms to be increasing for otherwise the welding
conformal maps do not exist. We now describe how to solve the conformal
welding problem for finitely connected regions. Suppose that we are given n > 1
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disjoint closed disks Dj ⊂ C and increasing homeomorphisms hj, of the unit
circle onto ∂Dj , j = 1, . . . , n. By the simply connected case, we can find a
conformal map f1 of the complement of D1, C \ D1, into C and a conformal
map g1 of the unit disk into C so that each map extends continuously up to the
bounding circle of their domains and such that f1(h1(ζ)) = g1(ζ) for all ζ ∈ ∂D.
Set γ1,1 ≡ g1(∂D) = f1(∂D1). Next find a conformal map k2 of the (punctured)
simply connected region C\f1(D2) onto the complement of a disk, C\D2,2. The
homeomorphism h2 is then transplanted to

H2 = k2 ◦ f1 ◦ h2

of ∂D onto ∂D2,2.

D1

D

D

D2

f1

g1 γ1,1
γ1,2

k2

k2(γ1,1)

k2(γ1,2)

D2,2

γ2,1

f2

g2

γ2,2

Figure 1. Welding two disks into the plane.
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The Jordan curve γ1,1 is mapped to the Jordan curve k2(γ1,1). We can now repeat
this process by conformally welding the unit disk to ∂D2,2 with the prescribed
homeomorphism H2 using conformal maps f2 of C \ D2,2 and g2 of D onto the
complementary components of a Jordan curve γ2,2. The image γ2,1 ≡ f2(k2(γ1,1))
remains a Jordan curve. Repeating this process for the successive images of the
remaining disks yields the desired welding maps. The procedure uses N weldings
and N − 1 additional conformal maps. See Figure 1.

In the process of writing this paper, we realized that this approach is closely
related to the earlier work of the physicist, B. Doyon [1, App. B] on certain
doubly connected regions. Doyon proves that if a conformal function on a doubly
connected region is sufficiently close to the identity map, then it can be factored
as the composition of two functions defined on simply connected regions. He
proves existence by analyzing certain integral equations for the factors. As can
be seen from Figure 1, if we are given the doubly connected region at the bottom
of Figure 1, then we can compose the map k−1

2 ◦ f−1
2 which is conformal on the

region outside γ2,2 with the map f−1
1 , which is analytic on the region outside γ1,1

to obtain the map of the finitely connected region bounded γ2,1 ∪ γ2,2 onto the
region bounded by ∂D1 ∪ ∂D2. If we find the welding homeomorphisms, using
Koebe’s Theorem for example, then we can apply the welding method described
above to construct the desired maps. This idea also works when there are more
than two boundary components, and there is no restriction on the boundaries.

Theorem 1 below follows then from the ideas given in Figure 1.

Theorem 1. Suppose Ω is a finitely connected region whose complement is a

union of disjoint compact sets Kj, such that ∂Kj is a quasicircle, j = 1, . . . , n.
Then there are conformal maps ϕj of simply connected regions Uj into C, for

j = 1, . . . , n, so that

(2) ϕ = ϕn ◦ · · · ◦ ϕ2 ◦ ϕ1

is a conformal map of Ω onto a region bounded by n circles. Moreover, each ϕj

has a quasiconformal extension to the sphere S2 so that (2) holds on S2. As a

consequence, if Ω is any finitely connected region bounded by n compact connected

sets, then we can find 2n conformal maps ϕj of simply connected regions Uj,

j = 1, . . . , 2n so that (2) holds with n replaced by 2n.

Proof. See [3, Sec. VII.3] for background and references on quasicircles. First
suppose that each ∂Kj is a quasicircle. By Koebe’s Theorem [4] we can find a
conformal map f of Ω onto the complement of n disjoint closed disks {Dj}, and
by the Riemann Mapping Theorem we can map each Kj onto D with conformal
maps gj . By [5, Thm. II.8.3] the maps gj and f have quasiconformal extensions
to the sphere, since each boundary component is a quasicircle. As described
earlier, hj = f ◦ g−1

j is a welding homeomorphism of the unit circle onto the jth

circle ∂Dj on the sphere, which must then be quasisymmetric. Armed with these
weldings, we construct the inverses of the desired maps ϕj . First weld ∂D onto
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∂Dn using a conformal map Fn of the complement of Dn, S2\Dn, and a conformal
map Gn defined on D so that hn = F−1

n ◦ Gn. The image Un = Fn(S2 \ Dn) is
a simply connected region. Then find a conformal map Ln−1 of the complement
of the image of Fn(Dn−1) onto the complement of a disk, D′

n−1. Next weld ∂D

onto ∂D′

n−1 using a conformal map Mn−1 of S2\D′

n−1 and a conformal map Gn−1

defined on D so that

Ln−1 ◦ Fn ◦ hn−1 = M−1
n−1 ◦Gn−1.

The map Fn−1 = Mn−1◦Ln−1 is a conformal map of the complement of Fn(Dn−1)
onto a simply connected region Un−1. Repeat this process with the remaining
boundary components. Then set ϕj = F−1

j , and

ϕ = ϕn ◦ · · · ◦ ϕ2 ◦ ϕ1.

Then ϕ is a conformal map of a finitely connected region ϕ−1(S2 \ ∪Dj) onto
S2 \ ∪Dj . Note that

F = F1 ◦ F2 ◦ · · · ◦ Fn ◦ f
is a conformal map of Ω into the plane. Likewise

F1 ◦ F2 ◦ · · · ◦ Fj−1 ◦Gj ◦ gj

is a conformal map of the jth component of the complement of Ω onto the jth

component of the complement of ϕ−1(S2 \ ∪Dj) which agrees with F on the
boundary of the jth component of ∂Ω since the weldings are the same. We
repeat this observation for each boundary component and hence obtain a home-
omorphism of the extended plane or S

2 onto itself which is conformal off finitely
many quasicircles. But quasicircles are removable for homeomorphims which are
conformal off the quasicircles and so we obtain a conformal map of the sphere
onto itself, which must then be a Moebius map. Thus f = ϕ ◦M where M is a
Moebius map of the sphere. Replacing ϕ1 by ϕ1 ◦M we obtain a factorization
of f as a composition of n conformal maps of simply connected regions. By
[3, Cor. VII.3.4], each ϕj has an extension to a quasiconformal homeomorphism
of C onto C or S2 onto S2.

Now suppose that Ω is any finitely connected region bounded by compact sets
K1, . . . , Kn. By applying a Moebius map if necessary, we may suppose infinity
is an interior point of Ω. There exists a conformal map ψ1 of the unbounded
component of C\K1 onto the complement of a disk D1 by the Riemann Mapping
Theorem. Again by the Riemann Mapping Theorem, there exists a conformal
map ψ2 of the unbounded component of C \ ψ1(K2) onto a disk. The image
ψ2(∂D1) is an analytic curve. Repeating this process for each boundary curve
we obtain a composition

ψn ◦ · · · ◦ ψ2 ◦ ψ1 : Ω → Ω′,

where Ω′ is a region bounded by n analytic curves. Now apply the first part of
the proof to obtain the remaining n conformal maps.
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It would be interesting if there were a way to construct these maps ϕj directly,
without first constructing the map f . After this article was refereed, we received
a new preprint from B. Doyon proving that any conformal map (not just maps
to regions bounded by circles) on any finitely connected domain can be factored
as a composition of n conformal maps of simply connected domains. Doyon uses
the Uniformization Theorem in a clever way, instead of conformal welding.

3. Koebe’s method

Given n disjoint simply connected regions in the plane, we can compute the
associated welding homeomorphism provided we have a method of computing
a conformal map of the complement of (the closure of) these regions onto the
complement of n disjoint disks. In 1910, Koebe [4] proved that if Ω is a region
whose complement consists of n disjoint compact connected sets then there is
a conformal map of Ω onto a region bounded by n circles. He also outlined an
iterative method for constructing such maps using only conformal maps of simply
connected regions, though without a proof of convergence. In 1959, D. Gaier [2]
proved that Koebe’s iterative method converges. In fact it converges remarkably
fast as we will illustrate.

Here is Koebe’s method. Suppose K1, . . . , Kn are disjoint compact connected
sets in the plane. Let Ω = C \ ⋃

j Kj . We assume that C \Kj is connected, by
filling in the holes in Kj if necessary. Thus Ω is connected.

Find a conformal map f1 of C \K1 onto C \D1, where D1 is a closed disk. Then
find a conformal map f2 of C\f1(K2) onto C\D2 where D2 is a closed disk. The
image f2(D1) is not a disk, but it is fairly close to a disk. Next find a conformal
map f3 of C \ f2 ◦ f1(K3) onto C \ D3 where D3 is a closed disk. Repeat the
construction on the images in such a way that the images of each of the original
compact sets are used infinitely many times.

To illustrate Koebe’s method, consider the triply connected region in Figure 2(a)
which is the complement of three compact sets: a star, a boomerang, and an
anchor. The conformal maps below are computed using the geodesic zipper
algorithm with about 500 boundary points. First we map the complement of the
star to the complement of a disk. We normalize the map so that

f1(z) = z + O(1/z),

by requiring that the image of infinity is infinity, and then applying a linear map
if necessary. The result using the geodesic algorithm is given in Figure 2(b).
Notice that the boomerang and anchor have hardly changed. Now compute the
(normalized) conformal map of the complement of the image of the boomerang
onto the complement of a disk. The result is given in Figure 2(c).

Notice that the disk which was the image of a star has image that is still almost
a disk. Thirdly, find a conformal map of the second image of the anchor to
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(a) (b)

(c) (d)

Figure 2. Koebe’s method on a triply connected region.

the complement of a disk. See Figure 2(d). It is difficult after just these three
maps to visually distinguish the resulting image from the complement of three
disks. Koebe’s method continues by choosing another one of the three compact
complementary components of the region and mapping its complement to the
complement of a disk, cycling through each of the three choices infinitely many
times. Because of the limited resolution of postscript pictures and the compres-
sion algorithm used in conversion to pdf format, some artifacts might appear in
printed or in electronic forms of these pictures which are not really present in
the data. Higher resolutions versions are available upon request.

Of course these compact sets are rather far apart from a conformal mapping point
of view. Figure 3 illustrates the application of Koebe’s method (via the geodesic
algorithm) in a more complicated situation. A Brownian traveler beginning at ∞
is extremely unlikely to hit the letters R or M before hitting C. This implies
that the conformal images of the latter two letters must be very small compared
to the image of the letter C.

• Figure 3(a) is the original region.
• Figure 3(b) is the result after mapping the complement of the letter C to

the complement of a disk.
• Figure 3(c) is the same as 3(b) except magnified near the small components.
• Figure 3(d) is the result after mapping Figure 3(b) so that the letter R

component becomes a disk.
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• Figure 3(e) is the same as Figure 3(d) except magnified near the small
components.

• Figure 3(f) is the result after mapping Figure 3(d) so that the letter M
component becomes a disk.

• Figure 3(g) is the same as Figure 3(f) except magnified near the small
components.

• Figure 3(h) is the result after applying three more conformal maps.
• Figure 3(i) is the same as Figure 3(h) except magnified near the small

components.
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Figure 3. Koebe’s method on a triply connected region.

Table 1 gives one method of comparing the images to a union of disks. The
geodesic algorithm with about 500 points on each boundary was used in Figure 2
and about 1000 points on each boundary in Figure 3. Roundness of a boundary
component was measured by taking an interior point of each component then
finding the ratio of the radius of the smallest disk centered at that point which
contains the bounded region over the radius of the largest disk centered at that
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point contained in the bounded region. No effort was made to choose optimal
centers. To maintain an interior point, or “center” in each region, we simply
normalized each interior map from the geodesic algorithm to send a given interior
point to the center of the corresponding circle, and computed the images of the
other “centers” by the map. Notice that the ratio is within 10% after just the first
three conformal maps described above for the star, boomerang, anchor region,
and has 7 correct digits after 9 maps. It takes longer, but not much longer for
the CRM region.

iteration star boomerang anchor
3 1.0939577 1.0569160 1.0000000
4 1.0000000 1.0558549 1.0003865
5 1.0004536 1.0000000 1.0008445
6 1.0004524 1.0000213 1.0000000
7 1.0000000 1.0000160 1.0000015
8 1.0000003 1.0000000 1.0000014

iteration C R M
3 1.0039654 1.3589302 1.0000000
6 1.0002746 1.0206082 1.0000000
9 1.0000260 1.0026309 1.0000000
12 1.0000032 1.0002989 1.0000000
15 1.0000000 1.0001116 1.0000000
18 1.0000003 1.0000366 1.0000000

Table 1. Ratio of max to min radius about images of center points.

One of the advantages of the geodesic zipper algorithm is that it is fast and
flexible enough to apply to any of these regions. Each map above takes less than
a couple of seconds to compute.

4. Numerical solution of the welding problem

To implement the solution to a finitely connected conformal welding problem,
from the discussion in Section 2, we need a numerical method for welding the
inside of a disk to the outside of a disk. There are several classical methods in the
literature for solving this welding problem theoretically. The “sewing method”
in [5] involves repeated reflections, the PDE method in [7] involves solving a
Beltrami equation. See [8] for another method with a numerical implementation,
albeit complicated. The zipper algorithm was invented in the 1980s as a simple,
fast and accurate method to solve this welding problem numerically.
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For the convenience of the reader, we give a brief description of welding using
the geodesic version of the zipper algorithm. For more details see [6]. Using
linear maps of the plane, we may suppose that both disks are the unit disk.
A welding map h(eiθ) of the unit circle to itself, which after a rotation will
satisfy h(−1) = −1, can be easily illustrated if it is given in the form (θ, w(θ))
where w(θ) = arg(h(eiθ)), an increasing homeomorphism of [−π, π] onto [−π, π].
We can approximate a given map w, for instance, by selecting a subdivision
−π = θ0 < θ1 < θ2 < . . . < θn = π. The zipper algorithm will create an
increasing homeomorphism wc so that wc(θj) = w(θj), j = 0, . . . , n. Since both
maps are increasing homeomorphisms, we easily then have

max
θ

|wc(θ) − w(θ)| ≤ max
j

|w(θj) − w(θj−1)|.

Let

C(z) = i
1 − z

1 + z

be a linear fractional transformation which maps the unit disk to the upper half
plane, the exterior of the disk to the lower half plane and the unit circle to the
real line. Then

hR = C ◦ eiw ◦ C−1

is an increasing homeomorphism of the real line to itself. Set xj = C(eiθj ) and
yj = C(eiw(θj)). We seek conformal maps f and g of the upper and lower half
plane onto the interior and exterior of a Jordan curve so that f(xj) = g(yj),
j = 0, . . . , n. In other words, the intervals Ij = (xj−1, xj) and Jj = (yj−1, yj) will
be mapped to a common arc of the Jordan curve. First apply linear maps to the
upper and lower half plane so that without loss of generality, In = (0,+∞) and
Jn = (0,+∞). We view the points xj as lying on the boundary of the upper half
plane and the points yj as lying on the boundary of the lower half plane. Apply
the map i

√
z to C\(−∞, 0], so that the points xj will be mapped to an increasing

sequence of points in (−∞, 0] and the points yj will be mapped to a decreasing
sequence of points in [0,∞). The image of In and Jn, the positive reals, is the
positive imaginary axis. The images of In−1 and Jn−1 are two intervals meeting
at 0. Apply a linear fractional transformation of the upper half plane onto itself
so that the image of these two intervals become [−1, 0] and [0, 1]. The map√
z2 − 1 is then a conformal map of the upper half plane H onto H \ I, where

I is the line segment from 0 to i. Then I is the image of the original intervals
In−1 and Jn−1. The positive imaginary axis is mapped to a curve in H from i
to a point on the extended real line. The images of In−2 and Jn−2 are now two
intervals meeting at 0, and by a linear fractional transformation we can map
them to [−1, 0] and [0, 1]. Applying

√
z2 − 1 again we “paste” the two intervals

corresponding to In−2 and Jn−2 to obtain the interval I.

Repeat this construction until only the image of I1 and J1 remain on R. Ap-
plying another linear fractional transformation, we may assume that the image
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of I1 = (−∞, 0] and the image of J1 = [0,∞). The image of all other (welded)
intervals forms a curve in H from 0 to ∞. Now apply the map z2. If we compose
the initial linear maps L1 and L2 of the upper and lower half planes with this se-
quence of constructed maps we obtain conformal maps f and g of the upper and
lower half plane onto the two components of the complement of a Jordan curve
passing through infinity. If a bounded Jordan curve is desired, simply compose
both maps with a linear fractional transformation. The inverse of each of these
maps may be found by composing the inverses of each of their building blocks
in the reverse order. Each inverse is either a linear fractional transformation or√
z2 + 1.

To give an example of the solution of a finitely connected conformal welding
problem, we prescribe two disks and two welding maps. The welding maps
hj(e

iθ) are given in the form (θ, arg(hj(e
iθ)−cj) as increasing homeomorphism of

[0, 2π] onto [0, 2π], where cj is the center of the jth disk, j = 1, 2. See Figure 4.
The red (lower) and blue (upper) graphs correspond respectively to the red (left)
and blue (right) circles.

Figure 4. Two disks and two weldings maps.

Applying the process described in Section 2 (see Figure 1), using the zipper
algorithm to create weldings, we obtain a doubly connected region Ω shown
in Figure 5 (red on the left, blue on the right) along with a conformal map f
(expressed as a composition of conformal maps of simply connected regions)
of the doubly connected region bounded by the two given disks Dj onto Ω and
conformal maps gj of the unit disk onto the interior of these two boundary curves
so that the given weldings wj(θ) satisfy

hj(e
iθ) = f−1 ◦ gj(e

iθ)),

where wj(θ) = arg(hj(e
iθ) − cj).
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Figure 5. A welded doubly connected region.

We conclude with an example where we find the welding maps for a given finitely
connected domain, namely the star-boomerang-anchor region of Figure 2. See
Figure 6. As described in Section 2, we need the conformal map f of this region
(the region outside all three) to a region exterior to three disks and we need the
conformal maps gj, j = 1, 2, 3, from the unit disk to the interior of the three
regions. The weldings are then hj = f−1 ◦ gj, which we display as graphs of
increasing homeomorphisms of [−π, π] as described earlier in this section. The
geodesic zipper algorithm can be used to find these maps. A conformal map of
the upper half plane to the interior of a Jordan curve and a conformal map of the
lower half plane to the exterior of the Jordan curve are simultaneously computed
by basically reversing the welding steps described above. At each step, the
inverses are also available as elementary maps. See [6] for details. We use these
maps at each stage of the Koebe algorithm described in Section 3 to obtain maps
of the extended plane minus a Jordan curve to the extended plane minus a circle,
and simply compose the sequence of maps. After a (rather small) finite number
of iterations of Koebe’s method using the geodesic zipper algorithm, we then
obtain by composition a conformal map of the original star-boomerang-anchor
region to the complement of three disks and conformal maps of the interiors of
the star, boomerang, and anchor to the interior of three disks. The inverses of
the latter maps are simultaneously found by the zipper algorithm. Composing
the inverses gives the welding homeomorphisms.

See Figure 6 for the resulting welding homeomorphisms.
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Figure 6. Welding homeomorphisms for the star-boomerang-
anchor region.

We leave it as an informative exercise for the reader to determine which of the
three homeomorphisms corresponds to each boundary curve. As a hint, we sug-
gest a careful study of Figure 2 and remind the reader of the highly non-Euclidean
compression and expansion for boundary values of conformal maps.
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2. D. Gaier, Untersuchung zur Durchführung der konformen Abbildung mehrfach zusammen-
hängender Gebiete, Arch. Rat. Mech. Anal. 3 (1959), 149–178.

3. J. Garnett and D. E. Marshall, Harmonic Measure, Cambridge Univ. Press, 2005.
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Addendum to

Conformal Welding for Finitely Connected Regions

Donald E. Marshall

After the online version of this article first appeared, A. Solynin pointed out that
Theorem 1 was announced in [A1]. Proofs appeared subsequently in [A2,A3].
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