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Abstract. We describe a modification of the geodesic algorithm for the numerical com-

putation of conformal maps. This modification while improving the accuracy also allows

us to give a simpler proof than in Marshall and Rohde [MR] of convergence for C1 curves.

0. Introduction.

A variant of the zipper algorithm for the numerical computation of conformal maps is described

in Marshall and Rohde[MR]. Briefly, if z0, . . . , zn are distinct points in the plane C, then a closed

curve γc is constructed passing through z0, . . . , zn such that if γk denotes the portion of the curve

from z0 to zk, then γk+1 \ γk is the hyperbolic geodesic in C \ γk from zk to zk+1, for k = 1, . . . , n,

where zn+1 ≡ z0. The initial arc γ0 is a straight line segment. The conformal maps from the

upper and lower half planes to the interior and exterior (respectively) of γc are then computed

as a composition of finitely many explicit elementary maps. This variant is called the geodesic

algorithm in [MR].

Given a Jordan curve γ and a sequence of points {zk} on γ, the conformal maps to the interior

and exterior of γ are approximated by the conformal maps to the interior and exterior of the curve

γc, given by the goedesic algorithm. How close these conformal maps are depends on how close the

curves γ and γc are (see [MR]). In other words, we need to understand the behaviour of γc between

the data points {zk}. It is proved in [MR], for example, that if {Dk}n0 is a sequence of disjoint open

disks with ∂Dk−1 tangent to ∂Dk at zk, then

γk+1 \ γk ⊂ Dk,

for k = 1, . . . , n. This result was deduced rather easily using an old result of Jørgensen [J], which

says that disks are convex in the hyperbolic geometry of a region. Given a sequence of points {zk},
it is in fact rare that such a sequence of pairwise tangential disks can be found. The emphasis in

[MR] for the application of this result was rather on finding points z1, . . . , zn on or near a given

curve so that such disks can be found. As a result, the algorithm computes a curve close to the

given curve.
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For smooth curves a much more complicated argument in [MR] located the geodesics γk+1 \γk
in smaller regions. This allowed us to prove C1 convergence of a sequence of computed curves γ

(n)
c

to the given C1 curve, as the mesh size maxj |z(n)j+1 − z
(n)
j | decreases to zero.

In this article we describe a modification of the geodesic algorithm that allows us to locate the

hyperbolic geodesics γk+1 \ γk in smaller regions called lenses with a simple geometric description,

and with a simpler proof relying only on Jørgensen’s theorem as in the disk case. The modification

also improves the numerical accuracy of the geodesic algorithm.

1. The geodesic algorithm.

For the convenience of the reader we give a short description of the geodesic algorithm. For

more details see [MR].

The geodesic algorithm constructs a Jordan curve through a collection of (distinct) points

z0, . . . , zn in C. We will describe the algorithm using the right half planeH+ = {z : Rez > 0} instead
of the traditional upper half plane because because of the usual convention that −π

2 < arg
√
z ≤ π

2 .

Using the right half plane will avoid errors due to choosing the wrong branch of the square root,

as several people have encountered when programming the algorithm. See the end of this section

for more details.

If ζ = a+ ib ∈ H
+ then

Lζ(z) =
cz

1 + idz

with c = a/(a2 + b2) > 0 and d = b/(a2 + b2) ∈ R is a conformal map of the right half plane H
+

onto H
+ with Lζ(0) = 0 and Lζ(ζ) = 1. The map

S(z) =
√

z2 − 1

is a conformal map of H+ \ [0, 1] onto H
+. The composed function

fζ(z) =
√

Lζ(z)2 − 1

is then a conformal map of H
+ \ σ onto H

+, where σ is the circular arc from 0 to ζ which is

orthogonal to the imaginary axis iR at 0.

The complement in the extended plane of the line segment from z0 to z1 can be mapped onto

H
+ with the map

ϕ1(z) =

√
z − z1
z − z0

and ϕ1(z1) = 0 and ϕ1(z0) = ∞. Set ζ2 = ϕ1(z2) and ϕ2 = fζ2 . Repeating this process, define

ζk = ϕk−1 ◦ ϕk−2 ◦ . . . ◦ ϕ1(zk)
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and

ϕk = fζk .

for k = 2, . . . , n. Map the inside and outside of half-disc to the upper and lower half planes by

letting

ζn+1 = ϕn ◦ . . . ◦ ϕ1(z0) ∈ R

be the image of z0 and setting

ϕn+1 = ±
(

z

1− z/ζn+1

)2

The + sign is chosen in the definition of ϕn+1 if the data points have negative winding number

(clockwise) around an interior point of ∂Ω, and otherwise the − sign is chosen. Set

ϕ = ϕn+1 ◦ ϕn ◦ . . . ◦ ϕ2 ◦ ϕ1

and

ϕ−1 = ϕ−1
1 ◦ ϕ−1

2 ◦ . . . ◦ ϕ−1
n+1.

Then ϕ−1 is a conformal map of H+ onto a region Ωc such that zj ∈ γc = ∂Ωc, j = 0, . . . , n.

If γj denotes the subarc of γc from z0 to zj , then the portion γj+1 \ γj of γc between zj and zj+1

is the image of the arc of a circle in the right half plane by the analytic map ϕ−1
1 ◦ . . . ◦ ϕ−1

j and

thus a geodesic in the hyperbolic geometry of C \ γj .
As an aside, we make a few comments. The curve γc is piecewise analytic. A curve is called C1

if the arc length parameterization has a continuous first derivative. In other words, the direction of

the unit tangent vector is continuous. It is easy to see that γc is also C1 since the inverse of the basic

map fζ doubles angles at 0 and halves angles at ±c. Actually it is shown in [MR] that γc ∈ C
3

2 .

Note also that ϕ−1 is a conformal map of the lower half plane onto the region complementary to

Ωc.

Branching difficulties occur when, through round-off error or analytic continuation, the map
√
z2 − 1 is applied to points with Rez < 0. This function should have positive imaginary part when

Imz > 0. For example if z = −ε+2i with ε > 0, then Imz2 < 0 so that Im
√
z2 − 1 < 0 if the usual

branch cut along the negative reals is used (as is the case in most programming languages). This

difficulty can be avoided by adding a simple test: Set

w =
√

z2 − 1

If (Imw)(Imz) < 0, then replace w with −w.
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2. Lenses

If D+ and D− are open disks with b, c ∈ ∂D+ ∩ ∂D−, then L = D+ ∩D− is called a lens with

vertices b and c.

b

c
L

D+

D−

ε+

ε−

Figure 1. A lens with vertices b and c and lens angle ε = ε+ + ε−.

Let ε+ denote the angle between the segment [b, c] and the tangent to ∂D+ at b with 0 < ε+ ≤
π
2
. Similarly ε− denotes the angle between [b, c] and ∂D− at b with 0 < ε− ≤ π

2
. Note that ∂D+

and ∂D− form the same angles with [b, c] at c. The angle ε = ε+ + ε− is called the angle of the

lens at b and c.

If z0, . . . , zn are points in C such that the polygonal curve through these points is Jordan, we

define an ε-tangential lens chain for z0, . . . , zn to be a sequence of lenses Lj = ∂D+
j ∩ ∂D−

j with

vertices zj and zj+1 such that the tangents to ∂D+
j and ∂D−

j at zj are also tangent to ∂D−
j−1 and

∂D+
j−1. All of the lens angles of an ε-tangential lens chain are equal and ε will denote this common

angle. The lens Lj contains the segment [zj , zj+1]. If the polygonal curve is closed, in other words

zn+1 = z0 then we do not require the last lens Ln to have the same tangents at z0 as L0.
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Lj
Lj−1

zj
zj−1

zj+1

Figure 2. An ε-tangential lens chain.

A hyperbolic geodesic in the unit disk D is an arc of a circle orthogonal to the unit circle ∂D.

Hyperbolic geodesics in a simply connected domain Ω are images of hyperbolic geodesics in D by

a conformal map of D onto Ω. The following is just an application of the proof of Theorem X.X in

[MR] to lenses.

Theorem 1. Suppose {Lj} is an ε-tangential lens chain with vertices z0, . . . , zn+1 with zn+1 = z0,

and suppose γc is a curve containing {zj} such that γk+1 \ γk is a hyperbolic geodesic in C \ γk,
where γk is the portion of γ from z0 to zk and γ0 is the line segment [z0, z1]. Then

γ ⊂
n⋃

j=0

Lj ∪ {zj}nj=1,

provided the associated disks Dj+ and D−
j do not intersect any of the previous lenses:

(
D+

j ∪D−
j

)
∩{Lk}j−1

k=0 = ∅,

for j = 1, . . . , n.

Proof. The hyperbolic geodesic γj+1 \ γj must intersect γj at zj with angle π. This can be seen

either by direct observation of the construction of γj in the geodesic algorithm, or by an appeal to

Theorem V.5.5 in [GM] after applying a square root map at zj . In other words, γ is a C1 curve.

By construction γ0 ⊂ L0. Suppose that γj ⊂ ∪j−1
k=0Lk. Write Lj = D+

j ∩D−
j . Since the tangent to

∂D+
j at zj is also tangent to Lj−1 and since γj \ γj−1 ⊂ Lj−1, we conclude that γj+1 \ γj enters

D+
j at zj . By assumption D+

j ∩⋃j−1
k=0 Lj = ∅ and hence D+

j ⊂ C \ γj . Jørgensen [J] proved that

disks in a simply connected region are convex in the hyperbolic geometry of the region. Thus the

hyperbolic geodesic γj+1 \ γj is contained in D+
j . Similarly γj+1 \ γj is contained in D−

j . Theorem

1 then follows by induction. �
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The proof of Theorem 1 shows why we chose the lenses to form a tangential chain. The

inductive assumption is that γj−1 is contained in the union of the first j − 1 lenses. The proof

requires first that the two disks D±
j do not intersect the previous lenses, so that the lens at stage

j cannot be made any bigger than the tangential lens Lj . Secondly the proof requires that a

geodesic beginning at zj forming an angle of π at zj with γj must enter the subsequent lens, so the

subsequent lens cannot be any smaller than the tangential lens Lj .

Figure 3 illustrates the difficulty in creating successive lenses. The bend angle at zj for the

polygonal line through z0, . . . , zn is given by

δj = arg

(
zj+1 − zj
zj − zj−1

)
.

For an ε-tangential lens chain, the lens angle εj = ε+j + ε−j satisfies

ε−j = ε+j−1 + δj

and

ε+j = ε−j−1 − δj = ε− ε−j .

ε+j−1

ε−j−1

ε−j

zj−1

zj

zj+1

zj+2

δj

Figure 3. A lens chain that cannot be extended to zj+2.

Applying this argument once more we obtain

ε+j+1 = ε+j−1 + δj − δj+1.

So if the bend angles are alternating in sign, the upper angles are increasing every two steps but

bounded by ε, potentially leading to the impossibility of extending the lens chain. Indeed in Figure 3

we can’t find a lens with vertices zj+1 and zj+2 having the same angles at zj+1 as Lj .
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This difficulty was overcome in [MR] by proving that the hyperbolic geodesic γj+1 \ γj is

actually contained in a smaller region than a lens. The important point is that the region has a

smaller angle at the vertex zj+1 than at zj , allowing for a bend, albeit small, in the polygon at the

next data point zj+1. Proving this result required a much more complicated argument than just

using induction and Jørgensen’s theorem.

We can also overcome this difficulty by altering the algorithm slightly so that additional points

are occasionally added to the sequence {zj}. For example, in the situation illustrated in Figure 3,

where ε+j−1 is too large, we can add an additional point z′j =
1
2
(zj−1 + zj) and replace the geodesic

γj \ γj−1 from zj−1 to zj by a geodesic γ′
j in C \ γj−1 from zj−1 to z′j followed by a geodesic γ′′

j in

C \ (γj−1 ∪ γ′
j) from z′j to zj . The lens Lj−1 is replaced by two lenses where the “lower” angle ε−j

at zj is now smaller than ε+j−1 and hence ε+j will be larger and ε−j will be smaller.

Lj−1

zj−1

zj
z′j

zj+1

zj+2

Figure 4. Extending a lens chain with an extra step.

We can do this systematically by keeping both angles ε±j between ε/2 and 3ε/2 as follows:

Given ε > 0, suppose {zj}n−1
0 are the vertices of a closed Jordan polygon with bend angles δj

satisfying

|δj | <
ε

2
.

Construct a 2ε-tangential lens chain as follows: Let L0 be the symmetric lens with vertices z0 and

z1 and lens angle 2ε = ε+0 + ε−0 where ε+0 = ε−0 = ε. Suppose we have constructed a 2ε-tangential

lens chain from z0 to zj , with lens angles εk = ε+k + ε−k satisfying

ε

2
≤ ε+k ≤ 3ε

2
(1)

for k = 0, . . . , j − 1. Note that (1) implies ε−k = 2ε− ε+k also satisfies

ε

2
≤ ε−k ≤ 3ε

2
.

Moreover, assume that ε+j = ε−j−1 − δj = 2ε− ε+j−1 − δj satisfies

ε

2
≤ ε+j ≤ 3ε

2
. (2)
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If
ε

2
≤ ε−j − δj+1 ≤ 3ε

2
, (3)

then let Lj be the lens with vertices zj and zj+1 and lens angle 2ε = ε+j + ε−j where ε+j = ε−j−1 − δj

and ε−j = 2ε − ε+j . Note that ε+j+1 = ε−j − δj+1, so that by (3), the inequalities in (2) hold with j

replaced by j + 1. On the other hand, if

ε−j − δj+1 <
ε

2
or ε−j − δj+1 >

3ε

2
,

then let z′j = 1
2
(zj + zj+1) be the midpoint of the segment [zj , zj+1], and let L′

j be the lens with

vertices zj and z′j and lens angle 2ε = ε+j + ε−j and let Lj be the lens with vertices z′j and zj+1 with

lens angle 2ε = ε−j + ε+j . Note that we have switched ε−j and ε+j for the lens Lj since there is no

bend at z′j . The lens Lj will have the same tangents at z′j as L′
j and will satisfy (3) since |δj | < ε

2

and since we switched the magnitudes of the two angles at z′j . See Figure 4.

By induction we then create a 2ε-tangential lens chain from z0 to zn. At the very last step there

is no need to check the inequality (3) since the last lens does not need to have the same tangents

as the initial lens at z0. By the construction of the final map ϕn+1 in the geodesic algorithm, the

computed curve is C1 at z0.

Suppose {L̃j}n0 is a chain of lens (not tangential) with vertices {zj}n0 such that L̃j is symmetric

about the line segment [zj , zj+1] for each j, and such that each lens L̃j has the same vertex angle

δ. We call such a chain a δ−symmetric lens chain. It is of course easier to construct symmetric

lens chains than to construct tangential chains. Part of the next theorem is that a δ−symmetric

lens chain contains a δ/3-tangential lens chain if

6max
j

∣∣∣arg
(
zj+1 − zj
zj − zj−1

)∣∣∣≤ δ (4)

Theorem 2. Suppose δ > 0 and set ε = δ/3. If γ is a C1 Jordan curve and if {zj} are points on

γ together with midpoints whenever required in the modification described above and with mesh

size

µ = min
0≤j≤n−1

|zj+1 − zj |

sufficiently small, then the geodesic algorithm constructs a C1 curve

γc ⊂
n⋃

0

Lk ∪ {zk},
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where Lk is the lens which is symmetric about the line segment [zk, zk+1] with vertex angles equal

to δ. The algorithm simultaneously computes conformal maps of the interior and exterior regions

of γc onto the upper and lower half planes (respectively) along with their inverse maps. Moreover,

if ζ ∈ γc and if α ∈ γ with |ζ − α| < µ, then

|ηζ − ηα| < δ, (5)

where ηζ and ηα are unit tangent vectors to γc and γ at ζ and α respectively.

Proof. Let {Lj} denote the 2ε-tangential lens chain constructed by the algorithm given in this

section. If the mesh size µ is sufficiently small then (4) holds and thus

δj = arg

(
zj+1 − zj
zj − zj−1

)

satisfies |δj | < ε/2. Since ε
2
≤ ε+j , ε

−
j ≤ 3ε

2
, the region D+

j ∪D−
j will be small if |zj+1 − zj | is small.

The region D+
j ∪D−

j does not intersect Lj−1 by construction. Since γ ∈ C1, the region D+
j ∪D−

j

will not meet any of the previous lenses if |zj+1 − zj | is sufficiently small. By Theorem 1, the

computed curve γc lies in the union of the lenses and their vertices. Note that each of the lenses in

the 2ε-tangential lens chain is contained in the corresponding symmetric lens L̃j with vertex angle

δ = 3ε, even if a midpoint (and therefore two lenses of the tangential chain) is added.

To prove the statement about tangent vectors, note that for each point ζ ∈ γj+1 \ γj , we can

construct a lens with vertices zj and ζ which has the same tangents as Lj−1 at zj . Moreover this

lens is contained in D+
j ∪ D−

j . The geodesic exits this new lens at ζ and hence the tangent to

γj+1 \ γj at ζ differs from the direction of the line segment from zj to ζ by at most 3ε
2 and hence

differs from the direction of the line segment from zj to zj+1 by at most 3ε. Since γ ∈ C1, we can

then choose a sufficiently small mesh size µ to guarantee that (5) holds. �

We remark that the computed curve γc can be parameterized so that if p(t) is the polygonal

curve through the data point {zj}, then

sup
t

|p(t)− γc(t)| ≤ µε,

where µ is the mesh size, as in the statement of Theorem 2. The angle ε can be taken to be bounded

by a constant times the modulus of continuity of the unit tangent vector to γ.

Since Jørgensen’s theorem is a key component of the proof of the convergence of the geodesic

algorithm, we include a short self-contained proof.

9



Theorem A.1 (Jørgensen). Suppose Ω is a simply connected domain. If ∆ is an open disc

contained in Ω and if γ is a hyperbolic geodesic in Ω, then γ ∩∆ is connected.

Proof. Without loss of generality, Ω is bounded by a Jordan curve and ∆ ⊂ Ω. Let f be a conformal

map of Ω onto H such that f(γ) is the positive imaginary axis which we denote by I. If J is the

subinterval of the imaginary axis from 0 to ic, then the conformal map τ(z) =
√
z2 + c2 of H \ J

onto H maps I \J onto I. Replacing Ω with f−1(H\J), and replacing f with τ ◦f , we may suppose

that f−1(iy) → z1 ∈ ∂Ω ∩ ∂∆ as y → 0. Similarly we may suppose that f−1(iy) → z2 ∈ ∂Ω ∩ ∂∆

as y → +∞. The points zj divide ∂∆ into two arcs α1 and α2. Then σj = f(αj), for j = 1, 2, are

arcs in H connecting 0 to ∞. We may suppose that σ2 lies to the left of σ1.

z1

z2
α1

α2

σ1σ2

∆

Ω

f

0

f(∆)

Figure 12. Proof of Jørgensen’s theorem.

Let Ω1 be the component of H\σ2 containing f(∆). Let ω1 be the bounded harmonic function

in C \ α2 such that

ω1(z) → 1 as z ∈ f−1(Ω1) → α◦
2

and

ω1(z) → 0 as z ∈ Ω \ f−1(Ω1) → α◦
2.

The function ω1 can be found explicitly using the conformal map of C∗ \ α2 onto H. Then by

comparison of boundary values and the maximum principle, arg z < πω1(f
−1(z)) for all z ∈ Ω1.

Since ω1 = 1
2
on α◦

1, we conclude

arg z <
π

2
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on σ1 ∩H. Similarly

π − arg z <
π

2

on σ2 ∩H. Thus f(∆) ⊃ I. �
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