
Math 536 Homework #4

Spring 2012

The first three problems are “A” exercises. You are to do them, but not hand them in.

1. Prove from scratch that the equivalence classes of curves beginning and ending at z0 and

contained in a region Ω form a group. i.e. verify that homotopy is an equivalence relation, that

there is a multiplication defined on the homotopy classes which gives the group multiplication.

Identify the unit, the inverse of an element of the group, associativity of multiplication, etc. Show

that the group is independent of the choice of base point z0. Finally show that this group is a

topological invariant: If F is a homeomorphism of Ω onto Ω1 then the fundamental groups for Ω

and Ω1 are isomorphic. Look at the proofs and decide what assumptions you need on Ω, i.e. if Ω

is an abstract set, what assumptions are needed to make all of these statements still hold?

2. (a) Find the fundamental group of D \ {0} (prove it). (b) Show that a doubly connected region

has the same fundamental group as D \ {0}.

3. Prove that if fa is a germ at a and if fa has an analytic continuation along a curve γ, with

γ(0) = a, then the continuation along γ is unique.

The following are “B” exercises, to be handed in next Wednesday.

1. (The modular function). Let S be the region {z = x + iy : |x| < 1, y > 0, and x2 + y2 > 1}.

Let π be the conformal map of S onto the upper half plane H with the property that π(−1) = 0,

π(1) = 1 and so that |π(z)| → ∞ as z ∈ S → ∞. Reflect π across each boundary curve repeatedly.

Show that these reflections fill the upper half plane. Show that any curve in C\{0, 1} which begins

at 1
2 lifts to a unique curve in H which begins at i = π−1(12 ) ∈ ∂S. Prove that the lifted curve is

closed if and only if the original curve is homotopic to a point. This is an explicit construction of

the simply connected covering surface of C \ {0, 1}.

2. Suppose g is entire and g omits the values 0 and 1. Show that π−1 ◦ g can be defined to be

entire, where π is defined in problem 1. Conclude that g is constant. (This was the original proof

of Picard’s (little) theorem.)

3. Let π(z) = e
z+1

z−1 , for z ∈ D. Show that π maps D onto D \ {0}. Show that if z0 ∈ D \ {0}, then

there is a small ball B containing z0 such that π−1(B) consists of countably many regions on each



of which π is a homeomorphism. This is an explicit construction of the covering map for D \ {0}

guaranteed by the theorem that will be proved in class.

4. (a) Let π be the map given in problem 3. Find an explicit conformal map L of D onto D such

that π(z) = π(w) if and only if z = L(n)(w) for some integer n, where L(n) is the n-fold composition

of L if n is positive and the −n-fold composition of the inverse of L if n is negative.

(b) Let Z = π−1(π(0)). Let F = {z ∈ D : ρ(z, 0) < ρ(z, a) for all a ∈ Z \ {0}}, where ρ is the

pseudohyperbolic metric given by
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Describe F geometrically.

(c) Show that π is a one-to-one conformal map of F onto the disk with a slit from 0 to ∂D

removed. Identifying two edges of the boundary of F we obtain a “conformal” copy of D\{0}. The

group G = {L(n)} is called the Fuchsian group for D \ {0} and the region F is called the normal

fundamental domain.

(d) Prove that f is analytic on D \ {0} if and only if there is an analytic funtion g defined on

D with g ◦ L = g on D and g = f ◦ π. A similar statement holds for meromorphic, harmonic and

subharmonic functions. This is a way to transfer function theory on the domain D \ {0} to D.

5. Repeat problem 4 using the map π constructed in problem 1, by composing with a map from

the disk to the upper half plane sending 0 to i. In this case there will be two maps L1 and L2 of the

disk onto the disk. They generate the Fuchsian group. In fancier words, C \ {0, 1} is conformally

equivalent to the disk modulo the Fuchsian group. The normal fundamental domain consists of two

copies of S. Part of this problem is to figure out the right statements to prove. Hint: reflections

are conjugate analytic.


