1. Let \(\{f_n\} \) be a sequence of analytic functions on a region \(\Omega \) with \(|f_n| \leq 1 \) on \(\Omega \). Let \(K \) be compact and contained in \(\Omega \). Suppose \(\{f_n\} \) converges at infinitely many points in \(K \). Then is it true or false that \(\{f_n\} \) necessarily converges at every point of \(\Omega \)?

2. Let \(F_M \) be the set of functions analytic on the (open) unit disk \(\mathbb{D} \) and continuous on the closed unit disk which satisfy
\[
\int_0^{2\pi} |f(e^{i\theta})|d\theta \leq M.
\]
Show \(F_M \) is a normal family on \(\mathbb{D} \) with respect to the Euclidean metric.

3. Let \(B \) be the set of functions \(f \) which are analytic on the unit disk \(\mathbb{D} \) and satisfy both \(f(0) = 0 \) and \(f(\mathbb{D}) \cap [1, 2] = \emptyset \). Prove \(B \) is a normal family (as maps from \(\mathbb{D} \) into the complex plane with the Euclidean metric) which contains all of its limit functions.

4. Given \(c > 0 \), use normal families to prove there exists an \(r > 0 \) (depending upon \(c \)) such that if \(f \) is analytic on \(\mathbb{D} \), with \(|f(z)| \leq 1 \) for \(z \in \mathbb{D} \) and \(f(0) = 0 \) and \(|f'(0)| > c \), then \(f(\mathbb{D}) \) contains a disk centered at 0 of radius \(r > 0 \). Show the conclusion fails if \(c = 0 \).

5. Do problem 4 without using normal families and obtain an explicit lower bound for \(r \) depending on \(c \).

6. a. Prove that a family \(\mathcal{F} \) of analytic functions on a region \(\omega \) is normal if and only if the family \(\mathcal{F}' = \{f' : f \in \mathcal{F}\} \) is normal and for some \(z_0 \in \Omega \), the set \(\{f(z_0) : f \in \mathcal{F}\} \) is bounded.
 b. Find an example of a sequence \(\{f_n\} \) which is normal on \(\mathbb{C} \) using the spherical metric, but \(\{f'_n\} \) is not normal on \(\mathbb{C} \) using the spherical metric.