1. Suppose f is analytic in a neighborhood of D and that $|f(z)| < 1$ on ∂D. Using Rouché’s theorem show that there exists one and only one point $z_0 \in D$ such that $f(z_0) = z_0$.

2. Let $f(z) = z + a_2 z^2 + a_3 z^3 + a_4 z^4 + \ldots$ be analytic in D. Suppose

 \[c = |a_2| + |a_3| + |a_4| + \ldots < 1. \]

 Show that if $|w| < 1 - c$ then there is exactly one $z \in D$ with $f(z) = w$.

3. How many zeros does $p(z) = 3z^5 + 21z^4 + 5z^3 + 6z + 7$ have in D? How many zeros in $\{z : 1 < |z| < 2\}$? Choose coefficients of a fourth degree polynomial randomly and find out how many zeros in D, using the algorithm in Appendix A.

4. Prove that the number of roots of the equation

 \[z^{2n} + \alpha z^{2n-1} + 2 = 0, \]

 where α, β are real and nonzero, and n is a natural number, that have positive real part is equal to n if n is even. If n is odd, their number is $n - 1$ for $\alpha > 0$ and $n + 1$ for $\alpha < 0$.

 Hint: See what happens to

 \[z^{2n} + \alpha z^{2n-1} + \beta^2 \]

 as z traces the boundary of a large half-disk.

5. Let n be a positive integer and $a > 0$. Show that there exists f analytic in a neighborhood of $z = 1$ such that $f(1) = 1$ and

 \[af(z)^{n+1} + (1 - a)f(z)^n = z \]

 in a neighborhood of $z = 1$.

6. (this problem is complementary to problem 7 of HW #1). Suppose f is analytic on an open set U and $z_0 \in U$. Prove that there are points $z_1, z_2 \in U$ such that

 \[f'(z_0) = \frac{f(z_1) - f(z_2)}{z_1 - z_2}. \]

 Hint: consider $g(z) = z f'(z_0) - f(z)$.
7. Prove that all of the zeros of the polynomial

\[p(z) = z^n + c_{n-1}z^{n-1} + \ldots + c_1 z + c_0 \]

lie in the disc centered at 0 with radius

\[R = \sqrt{1 + |c_{n-1}|^2 + \ldots + |c_1|^2 + |c_0|^2}. \]

8. Let \(f(z) \) be an entire function with only finitely many zeroes. Define

\[m(r) = \min_{|z|=r} |f(z)|. \]

Show that if \(f \) is not a polynomial then \(m(r) \to 0 \) as \(r \to \infty \).

9. Let \(P \) be a polynomial with complex coefficients, not identically zero. Prove that the series

\[\sum_{n=0}^{\infty} P(n)z^n \]

converges in \(\mathbb{D} \) and in no larger open set. Show that if \(f \) is the sum of this series, then \(f \) can be extended to be meromorphic in \(\mathbb{C} \) such that the singularity at \(\infty \) is not essential. Find the function \(f \).

10. Suppose that \(\Omega \) is a bounded region in \(\mathbb{C} \) such that \(\partial \Omega \) is a finite union of disjoint (piecewise continuously differentiable) closed curves \(\Gamma_j, j = 1, \ldots, n \). Suppose that \(f \) is analytic on \(\overline{\Omega} \). Prove that \(f = \sum f_j \) where \(f_j \) is analytic on the component of \(\mathbb{C} \setminus \Gamma_j \) which contains \(\Omega \).