Math 534 Homework #3
Autumn 2009

1. Suppose \(f \) is analytic in \(\mathbb{C} \) and \(|f(z)| \leq M|z|^\alpha \) for \(|z| > R \), where \(\alpha \) is a non-negative real number. Prove \(f \) is a polynomial of degree \(\leq \alpha \).

2. Prove that if \(f \) is non-constant and analytic on all of \(\mathbb{C} \) then \(f(\mathbb{C}) \) is dense in \(\mathbb{C} \).

3. Let \(f \) be analytic in \(\mathbb{D} \) and satisfy \(|f(z)| \to 1 \) as \(|z| \to 1 \). Prove \(f \) is rational.

4. Suppose \(f \) and \(g \) are analytic in \(\mathbb{C} \) and \(|f(z)| \leq |g(z)| \) for all \(z \). Prove there exist a constant \(c \) so that \(f(z) = cg(z) \) for all \(z \).

5. Suppose \(f \) is analytic in \(\mathbb{D} \) and \(|f(z)| \leq M \) on \(\mathbb{D} \). Prove that the number of zeros of \(f \) in the disc of radius \(1/4 \), centered at \(0 \), does not exceed

\[
\frac{1}{\log 4} \log \left| \frac{M}{f(0)} \right|.
\]

6. Suppose \(f \) is analytic in \(\mathbb{D} \) and \(|f(z)| \leq 1 \) in \(\mathbb{D} \) and \(f(0) = 1/2 \). Prove that \(|f(1/3)| \geq 1/5 \).

7. Let \(f \) be analytic in \(\mathbb{D} \) and suppose \(|f(z)| < 1 \) on \(\mathbb{D} \). Let \(a = f(0) \). Show that \(f \) does not vanish in \(\{ z : |z| < |a| \} \).