1. Find the series expansion of
\[
\frac{z + 2i}{(z - 2)(z^2 + 1)}
\]
about the point 1.

2. (a) Suppose \(p \) is a polynomial with all its zeros in the upper half plane \(\mathbb{H} = \{ z : \text{Im} z > 0 \} \). Prove that all of the zeros of \(p' \) are contained in \(\mathbb{H} \). Hint: Look at the partial fraction expansion of \(p'/p \).

(b) Use (a) to prove that if \(p \) is a polynomial then the zeros of \(p' \) are contained in the (closed) convex hull of the zeros of \(p \). (The closed convex hull is the intersection of all half planes containing the zeros.)

3. Suppose \(f \) is analytic in a connected open set \(U \). If \(|f(z)| \) is constant on \(U \), prove that \(f \) is constant on \(U \). Likewise, prove that \(f \) is constant if \(\text{Re} f \) is constant.

4. Suppose \(f \) is analytic in a connected open set \(U \) such that for each \(z \in U \), there exists an \(n \) (depending upon \(z \)) such that \(f^{(n)}(z) = 0 \). Prove \(f \) is a polynomial.

5. Let \(f \) be analytic in a region \(U \) containing the point \(z = 0 \). Suppose \(|f(1/n)| < e^{-n} \) for \(n \geq n_0 \). Prove \(f(z) \equiv 0 \).

6. Suppose \(f \) has a power series expansion about 0 which converges in \(\mathbb{C} \) and suppose
\[
\int_{\mathbb{C}} |f(x + iy)| dx dy < \infty.
\]
Prove \(f \equiv 0 \).

7. (Challenge problem) (a) Define \(n^{-z} = e^{-z \ln(n)} \). Prove that
\[
\zeta(z) = \sum_{n=1}^{\infty} n^{-z}
\]
converges uniformly and absolutely in \(\{ z : \text{Re} z > c \} \) for \(c > 1 \).

(b) Show that
\[
\zeta(z) - \frac{1}{z - 1} = \sum_{n=1}^{\infty} n^{-z} - \int_{n}^{n+1} x^{-z} dx
\]
and show the sum converges uniformly and absolutely on compact subsets of \(\{ z : \Re z > 0 \} \). Also evaluate the integrals above.

Probably the most famous problem in all of mathematics is to prove that if \(0 < \Re z < 1 \) and \(\zeta(z) = 0 \), then \(\Re z = 1/2 \).