A simple proof of the right hand rule

Fuchang Gao*

August 24, 2012

Given two vectors $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$, the cross product $\mathbf{u} \times \mathbf{v}$ is defined as the vector $\langle u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1 \rangle$. Because this is somewhat complicated, a typical calculus textbook introduces the symbolic determinant

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix},$$

where $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$ and $\mathbf{k} = \langle 0, 0, 1 \rangle$, which provides a quick proof that $\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u} and \mathbf{v} , and that $\mathbf{u} \times \mathbf{v} = 0$ if \mathbf{u} and \mathbf{v} are parallel.

The cross product satisfies another property called the *right hand rule*, meaning that as the fingers of your right hand curl from **u** to **v**, your thumb points in the direction of $\mathbf{u} \times \mathbf{v}$. Although very important in applications, most current calculus textbooks do not prove it. An exception is Colley [1], which defines the cross product through its geometric properties, including right-handedness, then proves its algebraic properties, including the determinant formula. Because of its length, such a proof is not suitable for classroom presentation. Once in a while, curious students may ask for a direct proof, and it may be difficult for an unprepared instructor to come up with one quickly. This note provides a proof simple enough to be presented in a lecture.

For $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$, $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$, the determinant of the vector

^{*}Department of Mathematics, University of Idaho, 875 Perimeter Drive MS 1103, Moscow ID 83844-1103. Email: fuchang@uidaho.edu

triple $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ is defined by

$$\det(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

It is a good exercise for students to check that $det(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v}) = \|\mathbf{u} \times \mathbf{v}\|^2$. We show that the positivity of this determinant implies the right hand rule.

The key to the proof is to relax the definition of the right hand rule. Given two non-parallel vectors \mathbf{u} and \mathbf{v} , let $\mathbf{n}(u, v)$ be the unit vector in the direction that your thumb points as the fingers of your right hand curl from \mathbf{u} to \mathbf{v} . Given three vectors \mathbf{u} , \mathbf{v} and \mathbf{w} that are not coplanar, we say that the vector triple $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ satisfies the *relaxed right hand rule* if $\mathbf{n}(u, v)$ forms an acute angle with \mathbf{w} . Of course, if \mathbf{w} is orthogonal to \mathbf{u} and \mathbf{v} , then the relaxed right hand rule is the same as the right hand rule. Using a right drawing convention, the vector triple $(\mathbf{i}, \mathbf{j}, \mathbf{k})$ satisfies the right hand rule, while the triple $(\mathbf{i}, \mathbf{j}, \mathbf{i} + \mathbf{k})$, for example, satisfies only the relaxed rule. Note that if you draw $(\mathbf{i}, \mathbf{j}, \mathbf{k})$ left-handed, the terms 'right' and 'left' have to be interchanged.

The benefit of introducing the relaxed right-hand rule is the following lemma.

Lemma. Adding a scalar multiple of one vector to another does not change the relaxed righthandedness of a triple $(\mathbf{u}, \mathbf{v}, \mathbf{w})$.

Proof. To begin, suppose we add a scalar multiple of \mathbf{u} to \mathbf{v} . Observe that the vectors \mathbf{v} and $\mathbf{v} + c\mathbf{u}$ are coplanar with \mathbf{u} , and always lie on the same side of \mathbf{u} , regardless of whether c is positive or negative. Thus, the direction of the thumb does not change, see Figure 1, so the angle between \mathbf{w} and the direction of the thumb is unchanged. Similarly, if we add a scalar multiple of \mathbf{v} to \mathbf{u} , the angle between \mathbf{w} and the direction of the thumb does not change.

Next, suppose we add a scalar multiple of \mathbf{u} or \mathbf{v} to \mathbf{w} . Since $\mathbf{n}(u, v)$ is orthogonal to \mathbf{u} and \mathbf{v} , $\mathbf{n}(u, v) \cdot (\mathbf{w} + \alpha \mathbf{u} + \beta \mathbf{v}) = \mathbf{n}(u, v) \cdot \mathbf{w}$, and so the acuteness of the angle between the thumb and $\mathbf{w} + \alpha \mathbf{u} + \beta \mathbf{v}$ is unchanged.

Finally, suppose we add a scalar multiple **w** to either **u** or **v**, say **u**. Because the vectors $\mathbf{n}(u + \alpha w, v)$, $\mathbf{n}(u, v)$ and $\mathbf{n}(\alpha w, v)$ are all orthogonal to **v**, they are coplanar. We can write

 $\mathbf{n}(u + \alpha w, v) = c(\alpha)\mathbf{n}(u, v) + d(\alpha)\mathbf{n}(w, v)$. Note that if you move your whole hand slightly, the direction of the thumb only changes slightly. In other words, $c(\alpha)$ and $d(\alpha)$ are continuous functions of α with c(0) = 1. If $c(\alpha) < 0$ for some α , then by intermediate value theorem of continuous functions, there exists $\beta \neq 0$ such that $c(\beta) = 0$. This gives $\mathbf{n}(u + \beta w, v) = \mathbf{n}(w, v)$. Thus $\mathbf{n}(u + \beta w, v)$ is orthogonal to $\mathbf{u} + \beta \mathbf{w}$, \mathbf{w} and \mathbf{v} , which is a contradiction. Hence $c(\alpha)$ is always positive, and consequently the inner products $\mathbf{n}(u + \alpha w, v) \cdot \mathbf{w}$ and $\mathbf{n}(u, v) \cdot \mathbf{w}$ have the same sign. Hence, the acuteness of the angle between the thumb and \mathbf{w} is unchanged.

Theorem. A vector triple $(\mathbf{u}, \mathbf{v}, \mathbf{w})$ satisfies the relaxed right-hand rule if and only if it has a positive determinant.

Proof. By adding a scalar multiple of one row vector to another, we can change a square nonsingular matrix into a diagonal matrix. These row operations neither change the determinant value nor, thanks to our lemma, change the handedness of the vector triple. Thus, we can find vectors $\mathbf{a} = a\mathbf{i}$, $\mathbf{b} = b\mathbf{j}$ and $\mathbf{c} = c\mathbf{k}$ such that the vector triple $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ has the the same handedness and the same determinant value as the original triple. However, it is straightforward to check, given in the right-hand drawing convention, that $(\mathbf{a}, \mathbf{b}, \mathbf{c})$ satisfies the right hand rule if and only if $det(\mathbf{a}, \mathbf{b}, \mathbf{c}) > 0$.

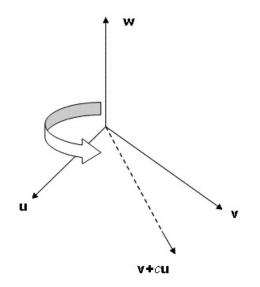
Corollary. The cross product satisfies the right hand rule.

Proof. For any two non-parallel vectors \mathbf{u} and \mathbf{v} , because $\det(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v}) = \|\mathbf{u} \times \mathbf{v}\|^2 > 0$, by the theorem above, the vector triple $(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v})$ satisfies the relaxed right hand rule. However, $\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u} and \mathbf{v} , the relaxed right hand rule is the same as the right hand rule.

Acknowledgement: This work was partially supported by a grant from the Simons Foundation (#246211 to Fuchang Gao).

References

[1] Colley, S. J. Vector Calculus, 4th ed., Pearson, Boston MA, 2012.



 $\label{eq:Figure 1} \textbf{Figure 1} - \text{The triple } (\textbf{u}, \textbf{v} + c \textbf{u}, \textbf{w}) \text{ has the same } \textit{relaxed right-handedness as } (\textbf{u}, \textbf{v}, \textbf{w}).$