Uniqueness of the Laplace Transform

A natural question that arises when using the Laplace transform to solve differential equations is: Can two different functions have the same Laplace transform (in which case we could not distinguish these two functions by just looking at the Laplace transform).

A piecewise continuous function \(f \) is said to be of exponential type \(a \), where \(a \) is a real number, if there is a constant \(M < \infty \), so that

\[
\left| \frac{f(t)}{e^{at}} \right| \leq M,
\]

for all \(t > N \). In other words, \(f \) doesn’t grow faster that \(e^{at} \) in this sense. If \(f \) is a piecewise continuous function of exponential type \(a \), then the Laplace transform \(\mathcal{L}f(s) \) exists for \(s > a \) (Exercise). As mentioned in class, we identify two piecewise continuous functions if they agree except possibly at the points of discontinuity.

Theorem. Suppose \(f \) and \(g \) are piecewise continuous on \([0, \infty)\) and exponential type \(a \). If \(\mathcal{L}f(s) = \mathcal{L}g(s) \) for \(s > a \) then \(f(t) = g(t) \) for \(t \geq 0 \).

Proof. If \(\mathcal{L}f = \mathcal{L}g \) then \(\mathcal{L}(f - g) = 0 \). So it is enough to prove that if \(\mathcal{L}f(s) = 0 \) for \(s > a \) then \(f(t) = 0 \) for all \(t \geq 0 \). Fix \(s_0 > a \) and make the change of variables in the Laplace transform of \(u = e^{-t} \). Then for \(s = s_0 + n + 1 \) we obtain

\[
0 = \mathcal{L}f(s) = \int_0^\infty f(t)e^{-nt}e^{-s_0 t}e^{-t}dt = \int_0^1 u^n(u^{s_0}f(-\ln u))du, \tag{1}
\]

\(n = 0, 1, 2, \ldots \) Let \(h(u) = u^{s_0}f(-\ln u) \). Then \(h \) is piecewise continuous on \((0, 1]\) and

\[
\lim_{u \to 0} h(u) = \lim_{t \to \infty} e^{-s_0 t}f(t) = 0,
\]

because \(s_0 > a \). Thus if we define \(h(0) = 0 \), then \(h \) is piecewise continuous and satisfies

\[
\int_0^1 h(u)p(u)du = 0,
\]

for every polynomial \(p \) by (1). This implies that if \(g \) has a power series expansion which converges uniformly on \([0, 1]\) then

\[
\int_0^1 h(u)g(u)du = 0. \tag{2}
\]

If \(h \) is not the zero function then replacing \(h \) with \(-h\) if necessary, we can find a \(u_0 \in (0, 1) \) and an interval \(J = [u_0 - c, u_0 + c] \subset [0, 1] \) and an \(c_1 > 0 \) so that \(h \geq c_1 \) on \(J \).
Consider the function \(g(u) = \frac{1}{d} e^{-\left(\frac{u-u_0}{d}\right)^2} \). If \(d > 0 \) then \(g \) has a power series expansion which converges uniformly on \([0, 1]\), so that (2) holds.

Set
\[
I_1 = \int_J g(u)du = \int_{u_0+c}^{u_0+c} g(u)du = \int_{-c/d}^{c/d} e^{-t^2} dt
\]
and
\[
I_2 = \int_{u_0+c}^1 g(u)du = \int_{c/d}^{(1-u_0)/d} e^{-t^2} dt
\]
and
\[
I_3 = \int_0^{u_0-c} g(u)du = \int_{-c/d}^{u_0/d} e^{-t^2} dt.
\]

Set \(A = \int_{-\infty}^{\infty} e^{-t^2} dt \). Then \(A > 0 \) and given \(\varepsilon > 0 \), there is a \(\delta > 0 \) so that if \(0 < d \leq \delta \) then
\[
I_1 \geq \frac{A}{2}, \quad 0 \leq I_2 \leq \varepsilon, \quad \text{and} \quad 0 \leq I_3 \leq \varepsilon.
\]

Because \(h \geq c_1 > 0 \) on \(J \) and \(|h| \leq N \), for some \(N < \infty \),
\[
\int_J h(u)g(u)du \geq c_1 A/2 > 0
\]
and
\[
\left| \int_{[0,1]\setminus J} h(u)g(u)du \right| \leq 2N\varepsilon.
\]
and so
\[
\int_0^1 h(u)g(u)du \geq c_1 A/2 - 2N\varepsilon > 0
\]
provided \(\varepsilon < \frac{c_1 A}{4N} \), contradicting (2). This proves that \(h \) is the zero function and so by the definition of \(f \), we must have \(f \) equal to the zero function, proving the theorem. \(\square \)

The idea for constructing the function \(g \) that violates (2), was to make it non-negative and essentially 0 off the interval \(J \) and have integral over \(J \) large, yet still be approximable by polynomials.