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Complex Numbers

§1. Complex Numbers.

The “complex numbers” C consist of pairs of real numbers: {(x, y) : x, y ∈ R}.

The complex number (x, y) can be represented geometrically as point in the plane R2, or

viewed as a vector whose tip has coordinates (x, y) and whose tail has coordinates (0, 0).

The complex number (x, y) can be identified with another pair of real numbers (r, θ), called

the polar coordinate representation. The line from (0, 0) to (x, y) has length r and forms

an angle with the positive x-axis. The angle is measured by using the distance along the

corresponding arc of the circle of radius 1 (centered at (0, 0)). By similarity, the length of

the subtended arc on the circle of radius r is rθ.
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Figure I.1 Cartesian and polar representation of complex numbers.

Conversion between these two representations is given by

x = r cos θ, y = r sin θ

and

r =
√

x2 + y2, tan θ =
y

x
.

Care must be taken to find θ from the last equality since many angles can have the

same tangent. However, consideration of the quadrant containing (x, y) will give a unique

θ ∈ [0, 2π), provided r > 0 (we do not define θ when r = 0).

Addition of complex numbers is defined coordinatewise:

(a, b) + (c, d) = (a+ c, b+ d),
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and can be visualized by vector addition.

(a, b)

(c, d)

(a+ c, b+ d)

Figure I.2 Addition.

Multiplication is given by:

(a, b) · (c, d) = (ac− bd, bc+ ad)

and can be visualized as follows: The points (0, 0), (1, 0), (a, b) form a triangle. Construct

a similar triangle with corresponding points (0, 0), (c, d), (x, y). Then it is an exercise in

high school geometry to show that (x, y) = (a, b) · (c, d). By similarity, the length of the

product is the product of the lengths and angles are added.

(1, 0)(0, 0)

(c, d)
(a, b)

(a, b) · (c, d)

Figure I.3 Multiplication.

The real number t is identified with the complex number (t, 0). With this identifica-

tion, complex addition and multiplication is an extension of the usual addition and multipli-

cation of real numbers. For conciseness when t is real, t(x, y) means (t, 0) · (x, y) = (tx, ty).

The additive identity is 0 = (0, 0) and −(x, y) = (−x,−y). The multiplicative identity

is 1 = (1, 0) and the multiplicative inverse of (x, y) is (x/(x2 + y2),−y/(x2 + y2)). It

is a tedious exercise to check that the commutative and associative laws of addition and

multiplication hold, as does the distributive law.

The notation for complex numbers becomes much easier if we use a single letter instead

of a pair. It is traditional, at least among mathematicians, to use the letter i to denote
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the complex number (0, 1). If z is the complex number given by (x, y), then because

(x, y) = x(1, 0) + y(0, 1), we can write z = x + yi. If z = x + iy then the “real” part of

z is Rez = x and the “imaginary” part is Imz = y. Note that i · i = −1. We can now

just use the usual algebraic rules for manipulating complex numbers together with the

simplification i2 = −1. For example, z/w means multiplication of z by the multiplicative

inverse of w. To find the real and imaginary parts of the quotient, we use the analog of

“rationalizing the denominator”:

x+ iy

a+ ib
=

(x+ iy)(a− ib)

(a+ ib)(a− ib)
=

xa− i2yb+ iya− ixb

a2 + b2
=

(xa+ yb

a2 + b2
)

+
(ya− xb

a2 + b2
)

i.

Here is some additional notation: if z = x + iy is given in polar coordinates by the

pair (r, θ) then

|z| = r =
√

x2 + y2

is called the modulus or absolute value of z. Note that |z| is the distance from the complex

number z to the origin 0. The angle θ is called the “argument” of z and written

θ = arg z.

The most common convention is that −π < arg z ≤ π, where positive angles are measured

counter-clockwise and negative angles are measured clockwise. The complex conjugate of

z is given by

z = x− iy.

The complex conjugate is the reflection of z about the real line R.
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It is an easy exercise to show

|zw| = |z||w|

|cz| = c|z| if c > 0,

z/|z| has absolute value 1,

zz = |z|2,

Rez = (z + z)/2,

Imz = (z − z)/(2i),

z + w = z + w,

zw = z · w,

z = z,

|z| = |z|,

arg zw = arg z + argw modulo 2π,

arg z = − arg z = 2π − arg z modulo 2π.

The statement “modulo 2π” means that the difference between the left and right hand

sides of the equality is an integer multiple of 2π.

The identity a+ (z − a) = z expressed in vector form shows that z − a is (a translate

of) the vector from a to z. Thus |z − a| is the length of the complex number z − a but it

is also equal to the distance from a to z. The circle centered at a with radius r is given by

{z : |z − a| = r} and the disk centered at a of radius r is given by {z : |z − a| < r}.

Complex numbers were around for at least 250 years before good applications were

found. Cardano discussed them in his book Ars Magna (1545). Beginning in the 1800’s,

and continuing today, there has been an explosive growth in their usage. Now complex

numbers are very important in the application of mathematics to engineering and physics.

It is a historical fiction that solutions to quadratic equations forced us to take complex

numbers seriously. How to solve x2 = mx + c has been known for 2000 years and can be

visualized as the points of intersection of the standard parabola y = x2 and the line

y = mx + c. As the line is shifted up or down by changing c, it is easy to see there are



§1: Complex Numbers 5

two, or one, or no (real) solutions. The solution to the cubic equation is where complex

numbers really became important. A cubic equation can be put in the standard form

x3 = 3px+ 2q,

by scaling and translating. The solutions can be visualized as the intersection of the

standard cubic y = x3 and the line y = 3px+ 2q. Every line meets the cubic, so there will

always be a solution. By formal manipulations, Cardano showed that a solution is given

by:

x = (q +
√

q2 − p3)
1

3 + (q −
√

q2 − p3)
1

3 .

Bombelli pointed out 30 years later that if p = 5 and q = 2 then x = 4 is a solution,

but q2 − p3 < 0 so the above solution doesn’t make sense. His “wild thought” was to use

complex numbers to understand the solution:

x = (2 + 11i)
1

3 + (2− 11i)
1

3 .

He found that (2 ± i)3 = 2 ± 11i and so the above solution actually equals 4. In other

words, complex numbers were used to find a real solution. See Exercise 4.

Here are some elementary estimates which the reader should check:

−|z| ≤ Rez ≤ |z|

−|z| ≤ Imz ≤ |z|

and

|z| ≤ |Rez|+ |Imz|.

Perhaps the most useful inequality in analysis is the

Triangle inequality.

|z + w| ≤ |z|+ |w|,

and

|z + w| ≥
∣

∣|z| − |w|
∣

∣.
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The associated picture perhaps makes this result clear:

z

wz + w

Figure I.4 Triangle inequality

Analysis is used to give a more rigorous proof of the triangle inequality (and it is good

practice with the notation we’ve introduced):

Proof.
|z + w|2 = (z + w)(z + w)

= zz + wz + zw + ww

= |z|2 + 2Re(wz) + |w|2

≤ |z|2 + 2|w||z|+ |w|2

= (|z|+ |w|)2.

To obtain the second part of the triangle inequality:

|z| = |z + w + (−w)| ≤ |z + w|+ | − w| = |z + w|+ |w|

and by subtracting |w|,

|z| − |w| ≤ |z + w|,

and switching z and w:

|w| − |z| ≤ |z + w|,

so that
∣

∣|z| − |w|
∣

∣≤ |z + w|. �
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§2. Polynomials.

We are interested in complex-valued functions of a complex variable. We could think

of such functions in terms of real variables as maps from the plane R
2 into R

2 given by

f(x, y) = (u(x, y), v(x, y)),

and think of the graph of f as a subset of R4. But the subject becomes more tractable if

we use a single letter z to denote in the independent variable and write f(z) for the value

at z, where z = x+ iy and f(z) = u(z) + iv(z). For example

f(z) = zn

is much simpler to write (and understand) than its real equivalent. Here zn means the

product of n copies of z.

The simplest functions are the polynomials in z:

p(z) = a0 + a1z + a2z
2 + . . .+ anz

n, (1.1)

where a0, . . . , an are complex numbers. If an 6= 0, then we say that n is the degree of p.

Note that z is not a (complex) polynomial, and neither is Rez or Imz.

Let’s take a closer look at linear or degree 1 polynomials. For example if b is a (fixed)

complex number, then

g(z) = z + b

translates, or shifts, the plane. If a is a (fixed) complex number then

h(z) = az

can be viewed as a dilation and rotation. To see this, observe that by Section 1 and

Exercise 1, |az| = |a||z| and arg(az) = arg(a) + arg(z) (up to a multiple of 2π). So that h

dilates z by a factor of |a| and rotates the point z by the angle arg a. A linear function

f(z) = az + b
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can then be viewed as a dilation and rotation followed by a translation. Equivalently,

writing f(z) = a(z + b/a) we can view f as a translation followed by a rotation and

dilation.

Another instructive example is the function p(z) = zn. By Section 1 again,

|p(z)| = |z|n and arg p(z) = n arg z mod 2π.

Each pie slice

Sk = {z :

∣

∣

∣

∣

arg z −
2πk

n

∣

∣

∣

∣

<
π

n
} ∩ {z : |z| < r},

k = 0, . . . , n− 1 is mapped to a slit disk

{z : |z| < rn} \ (−rn, 0).

Angles between straight line segments issuing from the origin are multiplied by n and for

small r, the size of the image disk is much smaller than the “radius” of the pie slice. See

Figure I.4

0
0

zn

r −rn

Figure I.4 The power map.

The function k(z) = b(z − z0)
n can be viewed as a translation by −z0, followed by

the power function, and then a rotation and dilation. To put it another way, k translates

a neighborhood of z0 to the origin, then acts like the power function zn, followed by a

dilation and rotation by b.

To understand the local behavior of a polynomial (1.1) near a point z0, write z =

(z − z0) + z0 and expand (1.1) by multiplying out and collecting terms to obtain:

p(z) = p(z0) + b1(z − z0) + b2(z − z0)
2 + . . .+ bn(z − z0)

n. (1.2)

Another way to see this is to note that p(z) − an(z − z0)
n is a polynomial of degree at

most n − 1, so (1.2) follows by induction on the degree. If b1 6= 0 then p(z) behaves



§2: Polynomials 9

like the linear function p(z0) + b1(z − z0) for z near z0. If b1 = 0 then near z0, p(z) is

closely approximated by p(z0) + bk(z − z0)
k, where bk is the first non-zero coefficient in

the expansion (1.2). Indeed, for small ζ = z − z0,

|p(z0 + ζ)− (p(z0) + bkζ
k)| ≤ C|ζ|k+1, (1.3)

for some constant C. Figure I.5 is sometimes called “walking the dog”, where the walking

path has radius r = |bk||ζ|
k and the leash has length s = C|ζ|k+1. As ζ traces a circle

centered at 0 of radius ε, the function p(z0)+bkζ
k winds k times around the circle centered

at p(z0) with radius r. For small ε, the function p(z0 + ζ) also then traces a path which

winds k times around p(z0), since s < r.

r
s

p(z0)

p(z0) + bkζ
k

Figure I.5 p(z0 + ζ) lies in a small disk of radius s = C|ζ|k+1 < r = |bk||ζ|
k.

For z near z0 then, p(z) behaves like a translation by z0, followed by a power function,

a rotation and dilation, and finally a translation by p(z0).

Lemma 2.1. Suppose p is a polynomial of degree n and suppose B = {z : |z − a| ≤ r} is

a closed disk. Then

(a) if b ∈ C then function

q(z) =
p(z)− p(b)

z − b

is a polynomial of degree n− 1 and

(b) |p| has a maximum and a minimum on B.

Proof. (a) Note that

zn − bn = (z − b)(bn−1 + zbn−2 + . . . zn−2b+ zn−1).
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So if p(z) =
∑n

k=0
akz

k, then

q(z) =
p(z)− p(b)

z − b
=

n
∑

k=1

ak(
k−1
∑

j=0

bk−1−jzj). (2.1)

The coefficient of zn−1 in (2.1) is an so q is a polynomial of degree n− 1.

(b) Suppose S is a square with B ⊂ S. Let K = LUB{|p(z)| : z ∈ B}. Suppose

zn ∈ B and suppose limn→∞ |p(zn)| = K. Divide S into 4 equal subsquares, at least

one of which, call it S1, must contain infinitely many zn. Now divide S1 into 4 equal

subsquares, at least one of which, call it S2, must contain infinitely many zn. Repeat this

process, obtaining a sequence of squares Sk with centers ck such that Sk+1 ⊂ Sk and each

Sk contains infinitely many zn. Write ck = xk + iyk. Because the size of Sk decreases to

0, we have LUB{xk} = GLB{xk}, so that x = limxk exists. Similarly y = lim yk exists.

Thus c = x+ iy = lim ck exists and is in B because |z − a| is continuous. For each k, let

wk be one of the zn in Sk. Then limwk = c. Because sums and products of continuous

functions are continuous, p and therefore |p| is continuous. Thus K = lim |p(wk)| = |p(c)|.

This proves that |p| has a maximum in B. Replacing LUB with GLB, this same argument

shows that |p| has a minimum in B. �

§3. The Fundamental Theorem of Algebra and Partial Fractions.

The “walking the dog” principle can be used to give a proof of an important result

you’ve seen in some form or another since high school.

Theorem 3.1 (Fundamental Theorem of Algebra). Every non-constant polynomial

has a zero in C.

This remarkable result says that if we extend the real numbers to the complex numbers

via the solution to the equation z2 +1 = 0 then every polynomial equation has a solution.

Proof. Suppose p(z) = anz
n + an−1z

n−1 + . . .+ a1z + a0, n ≥ 1, is a polynomial which

has no zeros and for which an 6= 0. Write

p(z) = zn(an + an−1/z + an−2/z
2 + . . .+ a0/z

n) = znh(z).
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Because |zk| = |z|k, h(z) converges to an 6= 0 and |p(z)| → ∞ as |z| → ∞. Thus for some

R, |p(z)| > |p(0)| for all |z| > R. By Lemma 2.1(b), |p(z0)| = min{z:|z|≤R} |p(z)|, for some

|z0| ≤ R. Then |p(z)| ≥ |p(z0)| > 0 for all z ∈ C. As in (1.2) we can write

p(z) = p(z0) + bk(z − z0)
k + bk+1(z − z0)

k+1 + . . .+ bn(z − z0)
n,

with bk 6= 0. As in (1.4), if |ζ| = |z− z0| is sufficiently small, then r = |bkζ
k| < |p(z0)| and

|p(z0 + ζ)− (p(z0) + bkζ
k)| < C|ζk+1| < r.

Moreover since p(z0) + bkζ
k winds around the circle centered at p(z0) with radius r, we

can choose ζ so that |p(z0) + bkζ
k| = |p(z0)| − r. Then

|p(z0 + ζ)| ≤ |p(z0 + ζ)− (p(z0) + bkζ
k)|+ |p(z0) + bkζ

k| < r + |p(z0)| − r = |p(z0)|,

contradicting the minimality of |p(z0)|. �

Corollary 3.2. If p is a polynomial of degree n, then there are complex numbers z1, . . . , zn

and a complex constant c so that

p(z) = c
n
∏

k=1

(z − zk).

Corollary 3.2 does not tell us how to find the zeros, but it does say that there are

exactly n zeros.

Proof. By Theorem 3.1, there is a complex number z1 so that p(z1) = 0. By Lemma

2.1(a) we can write p(z) = (z − z1)q(z) where q is a polynomial of degree n− 1. Again by

Theorem 3.1, there is a complex number z2 so that q(z2) = 0, so by Lemma 2.1(a) we can

write q(z) = (z−z2)r(z) where r is a polynomial of degree n−2. Repeating this argument

n times proves the Corollary. �

For example, the n distinct zeros of zn − 1 are cos(2πk/n) + i sin(2πk/n), k =

0, 1, . . . , n− 1 which are equally spaced around the unit circle. See Exercise 3(c).
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Recall that a rational function r is the ratio of two polynomials. By the Fundamental

Theorem of Algebra we can write r in the form

r(z) =
p(z)

∏N

j=1
(z − zj)nj

.

The next Corollary, also probably familiar to you, allows us to write a rational function

in a form that is easier to analyze. The form is also of practical importance because it

allows us to solve certain differential equations that arise in Engineering problems using

the Laplace transform and its inverse.

Corollary 3.3 (Partial Fraction Expansion). If p is a polynomial then there is a

polynomial q and constants ck,j so that

p(z)
∏N

j=1
(z − zj)nj

= q(z) +

N
∑

j=1

nj
∑

k=1

ck,j
(z − zj)k

. (2.2)

Proof. There are two initial cases to consider: If p is a polynomial then

p(z)

z − a
= q(z) +

p(a)

z − a
. (2.3)

where q(z) = (p(z)− p(a))/(z − a) is a polynomial, as in (2.1). Secondly, if a 6= b, we can

write
1

(z − a)(z − b)
=

A

z − a
+

B

z − b
, (2.4)

for some constants A and B. For if this equation is true, then we can multiply each term

on the right by z− a and let z → a to obtain A on the right. The same process on the left

yields 1/(a− b), and hence A = 1/(a− b). Similarly B = 1/(b− a). Now substitute these

values for A and B into (2.4) and check that equality holds. The full theorem now follows

by induction. Suppose the Corollary is true if the degree of the denominator is at most d.

If we have an equation of the form (2.2) of degree d then we can divide each term in the

equation by z−a. After division, the right side consists of lower degree terms to which the

induction hypothesis applies, with one exception: when the denominator of the left side

of (2.2) is (z − b)d. If a = b, then after division by z − b, each term will be of the correct
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form. If a 6= b, then we could have applied the inductive assumption to the decomposition

of
p(z)

(z − b)d−1(z − a)

and then divided the result by z − b. �

The proof above also suggests an algorithm for computing the coefficients {ck,j}. First

apply (2.3) with a = z1. Multiply each term of the result by 1/(z− b) where b is one of the

zeros of the denominator in (2.3) and apply either (2.3) or (2.4) to each of the resulting

terms on the right side. Rinse and repeat. The algorithm can be speeded up because we

know the form of the solution. For example if powers in the denominator nj are all equal

to one and if the numerator has smaller degree than the denominator, then the form is

p(z)
∏N

j=1
(z − zj)

=

N
∑

j=1

cj
z − zj

. (2.5)

If we multiply each term of the right side by z−z1 then let z → z1, we obtain c1. If we

multiply the left side by the same factor, it cancels one of the terms in the denominator and

letting z → z1 we obtain the value of the remaining part of the left side at z1. This quickly

gives c1 and can be repeated for c2, . . . , cN . This method is sometimes called the “cover-up

method” because it can be done with less writing by observing that cj is the value of the left

side at zj when you cover z−zj with your hand. If the denominator has terms with degree

bigger than one, first use a denominator with all terms of degree one as above then as in

the proof, multiply everything by 1/(z−b) and simplify all terms on the right, repeating as

often as needed. If the degree of the numerator at any stage is not less than the degree of the

denominator, use polynomial division to reduce the degree. Engineering problems typically

have rational functions with real coefficients. See the Exercises for a similar technique that

decomposes rational functions with real coefficients into terms whose denominators are

either powers of linear terms with real zeros or powers of irreducible quadratics with real

coefficients.

§4. Exercises.
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1. Check the details of the high school geometry problem in the geometric version of

complex multiplication.

2. Prove the parallelogram equality:

|z + w|2 + |z − w|2 = 2(|z|2 + |w|2).

In geometric terms, the equality says that the sum of the squares of the lengths of the

diagonals of a parallelogram equals the sum of the squares of the lengths of the sides.

It is perhaps a bit easier to prove it using the complex notation of this chapter than

a proof using high school geometry.

3. (a) Suppose w is a non-zero complex number. Choose z so that |z| = |w|
1

2 and

arg z = 1

2
argw or arg z = 1

2
argw + π. Show that z2 = w in both cases, and that

these are the only solutions to z2 = w.

(b) The quadratic formula gives two solutions to the equation az2+ bz+ c = 0, when

a, b, c are complex numbers with a 6= 0 because completing the square is a purely

algebraic manipulation of symbols, and there are two complex square roots of

every non-zero complex number by part (a). Check the details.

(c) Show that zk = cos(2πk/n)+ i sin(2πk/n), k = 0, 1, . . . , n are the n distinct roots

of zn − 1 = 0. Then use polar coordinates to find the n zeros of zn − w where

w 6= 0. Hint: Show zk+1 = z1zk.

4. Formally solve the cubic equation ax3+bx2+cx+d = 0, where x, a, b, c, d ∈ C, a 6= 0,

by the following reduction process:

(a) Set x = u + t and choose the constant t so that the coefficient of u2 is equal to

zero.

(b) If the coefficient of u is also zero, then take a cube root to solve. If the coefficient

of u is non-zero, set u = kv and choose the constant k so that v3 = 3v + r, for

some constant r.

(c) Set v = z + 1/z and obtain a quadratic equation for z3.

(d) Use the quadratic formula to find two possible values for z3, and then take a cube

root to solve for z.
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(e) Later we will see that the cubic equation has exactly three solutions, counting

multiplicity. But the process in this exercise appears to generate more solutions,

if we use two solutions to the quadratic and all three cube roots. Moreover there

might be more than one valid choice for the constants used to reduce to a simpler

equation. Explain.

5. (a) If p is a polynomial with real coefficients, prove that p can be factored into a

product of linear and quadratic factors, each of which has real coefficients, and so

that the quadratic factors are non-zero on R. Most Engineering problems involving

polynomials only need polynomials with real coefficients.

(b) For rational functions with real coefficients, such as those that typically occur in

applications, it is sometimes preferable to use a partial fraction expansion without

complex numbers in the expression. The cover-up method can also be used in

this case. Here is an example to illustrate the idea. If a, b, c, d, and e are real

show that
z2 + dz + e

(z − a)((z − b)2 + c2)
=

A

z − a
+

B(z − b) +D

(z − b)2 + c2
,

where A,B, andD are real. Here we have completed the square for the irreducible

quadratic factor. Notice also that we have written the numerator of the last term

as B(z − b) + D, not Bz + D. We can find A by the usual cover-up method.

Then to find B and D, we multiply by (z − b)2 + c2 and let it tend to 0. Thus

z → b ± ic. Cover up the quadratic factor in the denominator on the left and

let z → b + ic. On the right side, when we multiply by the quadratic factor, the

first term will tend to 0, the denominator of the second term will be cancelled

and B(z − b) +D tends to Bic+D. Thus the real part of the result on the left

equals D and the imaginary part equals Bc, and then we can immediately write

down the coefficients B and D. Try this process with two different irreducible

quadratic factors in the denominator, and you’ll see how much faster and accurate

it is than solving many equations with many unknowns. The choice of the form

of the numerator at B(z− b)+D instead of Bz+D made this computation a bit

easier. It also turns out that it makes it a bit easier to compute inverse Laplace
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transforms of these rational functions, because the resulting term is a shift in the

domain of a simpler function.


